中华学生百科全书:新材料工程

阅读 165 下载 30 格式 pdf 大小 134.26 KB 共40页2023-10-17 16:48:06发布于河南
新材料工程材料工程的历史意义材料是从原料中取得的生产产品的原始物料,包括人类在动物、植物或矿物原料上转化出来的所有物质。材料不仅是劳动的对象,同时又是人类在生产过程中创造人类物质文明和精神文明的支柱。材料的发展史过去是、现在是、将来也永远是与人类的进化史紧密相连的。目前人类正处在跨出地球之路的起点,不难想象:制造火箭、宇宙站、控测仪器等对材料的要求将会达到何等高的程度……。材料能为人类制造形形色色的有用器件。历史学家曾用材料来划分人类进化史的时代,石器时代、陶器时代、铜器时代、铁器时代……因而得名。人类的祖先告诉我们:他们用石头、骨骼、木材、兽皮等原料来制造工具和武器、建造住所、缝制衣服、加工用品的时代叫做石器时代。后来,他们发现容易塑造的粘土加热变硬,可制造陶器而进入了陶器时代。可见,人类凭借自己的智慧发展到能将天然材料改造加工为人工材料,恰恰是人类从一个时代进入另一个时代的里程碑。人类的进化史与材料科学的发展息息相关,以材料科学为基础的科学技术都已成为人类进化史上各个阶段的重要标志。从“钻木取火”到“炼金术”,从“蒸汽机”到“电子技术”,从“计算机”到“宇航登月”,这些在人类进化史上各个阶段的标志,已经载入了史册。现阶段的人类历史发展证明,材料是实现工业、农业、国防和科学技术现代化的重要物质基础。材料科学与信息科学、能源科学并列为现代人类文明的三大基础和支柱。而信息、能源却又依赖着材料而发展。信息、能源的创新又使材料的生产和利用达到更高的水平。各种新型材料伴随着高科技的涌现,导致某些产业部门的变革,对世界经济和社会结构产生重大影响,从而使人类社会从低级向高级阶段推进!然而,材料科学的发展经历了非常艰难的年代。一代代的科学家们前赴后继,谱写了改造大自然的伟大篇章。举例来说,从人类学会“钻木取火”的那一天起,就梦想用一开就亮的方法照明。这个美梦却困扰了人类几百万年。直到1821年,英国科学家戴维(H.Davy1778~1829)和他的助手法拉第,根据弧光放电原理制成了电弧灯。又经过美国的斯达尔、俄国的罗德金、英国的斯万等为电灯实用化提出各种实验方案,最后,在1881年由爱迪生在进行了7895次实验,试用了1600多种矿物和金属材料后,白炽灯才终于问世了!可见对于一种造福于人类文明的技术,材料是一个重要的关键!选择适合作灯丝的材料,没有成千上万次实验,没有研究、冶炼和制备材料的科学,也许我们今天还在点蜡烛照明哩。金属材料金属材料是人类较早就开发利用,而且目前仍居世界主流的一类材料。金属材料一般分为黑色金属材料和有色金属材料两大类。半导体材料和超导材料也归入金属材料范畴。钢铁钢铁可以说是目前应用最广泛的材料。目前全球每年钢产量超过4亿吨。修房造屋,铺路架桥,要用钢铁;制造机器、设备要用钢铁;制造飞机、轮船、大炮要用钢铁。在战争期间,钢铁的消耗量更为惊人。1973年埃及和以色列之间爆发战争,双方18天内损失坦克达2000多辆,消耗钢铁约10万吨。钢铁是从哪儿来的呢?自然界存在有陨铁,是小行星进入大气层燃烧冶炼后得到的。我们用的钢铁都是用铁矿石冶炼而来,其方法是:把铁矿石和还原剂(一般用焦炭)加入高炉,从炉腰鼓入大量空气(或者是富氧空气),点火使焦炭燃烧,产生高温的二氧化碳(CO2)气体,再与焦炭发生反应,得到还原剂一氧化碳(CO)。在高温下,一氧化碳与铁矿石发生反应,还原出铁来成为铁水,而其他杂质与造渣剂反应生成比铁水轻的渣浮在上面,除去渣就得到铁水。这就是高炉炼铁。生成的铁水经过炉外精炼,就可得到铸造生铁。其余铁水装入炼钢用的平炉、转炉或电炉中,在高温下通入氧气,使铁中的碳与氧气发生反应,生成气体跑出来,再加入其他物质以控制其中氮、硫、磷等元素的含量,就得到钢水。这就是炼钢。铁按其中碳的含量来分类:纯铁:纯度在99.9%以上,是和锡类似的白色固体。它性能差,几乎没有什么用途。熟铁:含碳量低于0.4%,韧性较好。生铁:含碳量高于1.7%,质地硬而脆,强度较高。钢:含碳量介于0.4%~1.7%之间。它性能良好,种类繁多,应用广。生铁分为普通生铁和铸造生铁两类。普通生铁又叫炼钢生铁,仅用作炼钢的原料。铸造生铁用于铸造各种零部件,以前多用灰口铁,其中的碳呈片状分布在铁原子中。灰口铁熔点低,熔液的流动性好,适用于生产机床底盘、农具、铁锅等强度高而不要求韧性好的用具。近年来人们又开发了一种新的球墨铸铁,其中的碳呈球形分布在铁中。球墨铸铁机械强度高,加工性能好,韧性有所提高,可以部分代替钢。生铁中由于碳的含量高,使铁的脆性增加,韧性降低,而钢则由于含碳量适宜,强度高又韧性好,因而应用广泛。钢主要分为两大类:碳素钢和合金钢。碳素钢又叫普通钢,其主要成分是铁和碳,其余元素含量虽然很少,但也能影响其性质。例如,硅能增加钢的强度和硬度,但降低其韧性。锰能增加钢的强度、硬度和韧性,提高耐磨性。磷和硫都是有害杂质,它们使钢在高温下或低温下脆性增加,易破坏断裂。碳素钢主要用作结构钢和工具钢。目前美国有90%的建筑采用钢结构而不用钢筋混凝土,高耸入云的摩天大楼几乎都是钢结构,日本也有81.4%的建筑采用钢结构。在普通钢中掺入镍、钨、钼、钒、铜、钛、铝、钴、硅等元素,就可以获得性质不同的合金钢。合金元素的加入使钢的性质发生了质的飞跃,获得了许多优异性能。第一个被认真研究的合金钢是锰钢,1882年由英国的哈德苏尔德首先研制成功。锰钢具有优良的耐磨性和抗震性,适用于制造碎石机和钢轨。后来研制成功的高锰钢,含锰量达80%,性极坚韧,是制造舰艇和坦克装甲的好材料。1912年,英国人布里尔利把一定比例的镍、铬加入钢中,研制成功了不锈钢。它具有极高的耐腐蚀性,在高温下也不会氧化。制造汽轮机叶片、耐酸器件、飞机零件等都要用到它。我们日常生活中所用的不锈钢刀、叉、盘等也是用这种合金钢生产的。以铁、钴、镍为主要成分的耐热钢,可以在800℃以上的高温环境中正常工作。美国宇航局研制的钴基合金,工作环境温度可达1150℃。而在钢中加入锯,其工作温度可达1300~1600℃。在美国“阿波罗”飞船上所用的一种涂有钼的化合物,能在2760℃的高温下工作。人们为什么对耐热钢如此感兴趣呢?这是因为:有了高性能的耐热钢,可以提高火力发电站的蒸汽温度,从而提高发电厂的热效率(目前发电厂的最高热效率仅为40%)。而火箭喷气发动机喷口的工作温度约1380℃,没有耐高温的喷口,就难以提高火箭的速度。人们在这方面的研究正逐步深入。在古典小说中常写到削铁如泥的宝刀,而真正称得上削铁如泥的是硬质合金钢,它是采用粉末冶金工艺制成的:把难熔的钨、钽、钛、钼等元素的碳化物的硬质颗粒,与铁合金的粉末混合后压制成型,经高温烧结而成。硬质合金钢的抗压强度极高,含钴10%的碳化钨基合金,其强度可达350~370kg/mm2(kg为千克,mm为毫米),是世界上强度最高的合金。有的硬质合金钢做成的刀具,在1400~1500℃下仍然可以高速切削金属。铝和铝合金铝在地壳中含量为7.45%,比铁(5%)还多,是一种资源十分丰富的金属。但由于它化学性质活泼,与氧结合紧密,因此自然界中不存在天然铝。铝的冶炼十分困难,人们直到1854年才用比氧更活泼的钠把铝从其氧化物中还原出来,铝因而身价倍增。那时在皇宫中最为珍贵的不是金银钻石而是铝制的工艺品和餐具。法国统帅拿破仑三世为了炫耀自己的财富,曾花重金为自己制了一顶铝盔。后来人们发明了电解冶炼铝的方法,铝才得到了广泛应用。铝比重小,重量轻,可以用来代替钢铁。它不仅能使设备重量减轻很多,而且强度高,不怕腐蚀,因而用途广泛。一架现代化的超音速飞机,铝和铝合金占总重量的70%;导弹上用铝达10%~50%;美国“阿波罗”飞船上,铝占金属总重的75%;我国第一颗人造卫星“东方红”的外壳也是铝合金。铝的强度不算低,当加入少量铜、锰、硅、镁等元素形成合金后,其强度又显著提高,经过一定的处理,甚至会超过一些钢的强度,但重量却比钢轻很多。有人估算,如果每辆汽车用300公斤铝代替钢,光美国一年就可节省29亿加仑的汽油。铝的导电性能也很好,虽比铜低却高于铁,但它比铜轻2/3,并且铝导线散热快,能通过较大电流而不会被烧坏。再加上价格便宜。因此近年来铝导线数量显著增加。在现代集成电路生产中,人们也用真空刻蚀铝膜来联接各元件。铝的导热性能好,几乎是铁的4倍,因此在工业上多被用于生产热交换器和散热器,铝制餐具也大量面市。你天天都在用铝,对吗?铝容易加工成型,可压成薄板或拉成细丝。铝容易与氧发生反应而在表面生成一层坚韧的氧化膜。这层膜性质稳定,有较强的抗腐蚀能力,因而适用于制造防腐设备。铝反光能力强,可制作反射镜。铝是非磁性金属,可作为防磁的罗盘盒。铝没有毒性,是良好的食品包装材料。铝和铝合金用途很广泛,是一种神通广大的材料,随着科学的发展,铝的家族还会不断增加新成员。不信,咱们走着瞧!钛钛在地壳中含量约为0.6%,仅次于铝、铁、镁,居金属含量的第四位。1791年英国化学家格雷戈尔就发现了钛元素,但直到1910年,英国人亨特才第一次在爆炸器中用钠还原四氧化钛,制得不到1克的纯金属钛。因为钛的高温化学性质活泼,所以必须在与空气和水相隔绝的环境中进行冶炼,在真空或惰性气体中提纯。因为冶炼技术困难,所以直到1947年,全世界才生产出2吨钛。钛比重小,仅为钢的一半,但强度比钢高。它抗腐蚀性强,甚至能抗王水的腐蚀。它熔点高,比黄金还高600℃左右。如此优异的综合性能在金属中少见,因此钛受到重视。钛是属于太空时代的金属。它的高强度、小比重的性能,特别适用于生产超音速飞机和航天器。美国70%的钛用于航空航天,美国YF—12A型战斗机,用钛量达93%。钛的耐高温性能好,是制造涡轮喷气发动机的理想材料,它几乎可以取代不锈钢和铝合金。利用钛合金代替不锈钢,可使发动机的重量减轻40%~50%。由于钛的抗腐蚀性能好,可用它制造深海潜艇,去探索海底的秘密。钛也可用于生产化工行业的反应器等设备。钛目前存在的问题是冶炼困难,产量低。如果在冶炼技术上取得突破,钛就有可能代替钢铁。因而它被称为“21世纪的金属”。形状记忆合金1961年,美国海军研究所的一个研究小组领取了一批弯弯曲曲的镍钛合金丝,人们把它们一根根拉直以便使用。但当它们偶然接近火时,又恢复了原来的弯曲状态。人们经过研究,搞清了这是材料的一种新效应——形状记忆效应。后来人们又发现了金镉合金、铜铝镍合金、铜锌合金、铜锡合金等都具有记忆效应。为什么会出现形状记忆效应呢?原来每种形状记忆合金都具有一定的转变温度。在转变温度以上,金属晶体结构是稳定的;在转变温度以下,晶体处于不稳定结构状态,一旦加热升温到转变温度以上,金属晶体就会回到稳定结构状态时的形状。形状记忆合金可以100%恢复形状,并且反复变形500万次,也不会产生疲劳断裂,因而具有许多奇妙的用途。为了在月球上收集资料,人们需要有一架像大伞似的天线。而宇宙飞船的空间有限,怎样才能把它带上天呢?可以用形状记忆合金做成天线,然后在其转变温度以下叠成一个小球团,带到月球上后,经太阳光加热升温,它就会像荷花一样徐徐展开成天线。多棒呀!用形状记忆合金的制成玩具,即使不小心弄变形了,只要用火一烤,它就会恢复原状。如果用形状记忆合金制造人造关节、人造骨骼等,即使发生了变形,只要用火一烤就能恢复原状,而不用去找医生了。还有一种设想是用形状记忆合金制造新型发动机:先让合金记住线圈的形状,在常温下把它制成电线,把这条电线接在大小不同的两个圆盘上,在圆盘的一侧加热水,另一侧加冷水。浸在热水中的合金要恢复线圈状,就要收缩,于是带动圆盘旋转,把热能直接变成机械能,并且水越热,旋转的次数就越多。用这种方法可以利用工厂、发电厂的废热水来做功,因而前景广阔。形状记忆合金开发利用面临的难题是:价格高,加工难。如果未来的研究解决了这些问题,许多奇妙的产品就会出现在我们面前。非晶态合金把粘浆状的熔融金属高速冷却,就可得到性能与一般金属大相径庭的非晶态合金。普通金属是原子排列很规则的晶体结构,而非晶态合金由于快速冷凝,原子排列很不规则,不能形成晶体结构,因此它具有奇妙的特性。它有良好的耐腐蚀性和电磁特性,并且是很好的超导材料和贮氢材料,因而被称为“梦幻般的金属”。由于非晶态合金具有优秀的电磁特性而又十分坚硬的特点,特别适于生产现代化磁头,以便利用高性能的合金磁带。它比一般结晶磁头的耐磨性高20%,日本TDK公司已开始生产这种磁头。另一个利用方法是用非晶态合金制造变压器的铁芯。普通硅钢铁芯因发热造成的铁损约每公斤铁芯1.1瓦,而非晶态合金仅为0.4瓦。但非晶态合金怕高温,一发热就会变成晶态,影响变压器的性能,各国对此正在研究解决办法。氢是最佳的二次能源,广泛使用氢能的一个难题是氢的贮存,而非晶态合金恰是一种良好的贮氢材料,它吸收和释放氢的速度很快,因而受到重视,但贮氢量较小,有待进一步改善其性能。一般材料做成的超导合金,在低温下质地较脆,难以加工,而非晶态合金却具有适当的韧性和弹性,是一种优异的超导材料。超导材料我们日常生活中使用的一切物质都具有电阻,这是一般的常识。但是,当物体的温度逐渐降低到绝对零度(零下273.15℃)附近时,其电阻会变成零。这就是超导现象。超导现象是1911年荷兰科学家温奈斯发现的,他用液氦在零下269.03℃下(即绝对温度4.12K,摄氏0度相当于绝对温度273.15K)冷却水银时,发现水银电阻完全消失。此时如果在水银中有感应电流,就会一直保持下去。他还制成了超导磁铁,想产生强磁场。但当电流增加到一定程度时,就破坏了超导状态。此时的磁场叫临界磁场。此外,超导还有临界温度,临界电流密度共三个临界约束值。在不超过这三个临界值的状态下,超导现象才会发生。由于超导体具有的奇妙特征,人们立即对它产生了浓厚兴趣,发现高临界转变温度的超导材料的竞赛在各国之间展开。1954年制成的铌锡合金转变温度为零下252.7℃,1975年制成的铌锗合金转变温度为零下249.75℃,到了80年代末更是掀起一股超导热潮,超导转变温度的纪录不断被打破。1990年9月中国超导研究中心制成的锑铋系材料的临界温度为零下151.15℃,为目前国际最高纪录。在提高转变温度的同时,人们也在研究提高另外两个临界值。美国阿尔贡国家实验室已使超导体的电流密度提高到105A/cm2(A为安培,cm为厘米),并且在30TC(特斯拉)的强磁场中仍具有超导性质(1特斯拉等于1万高斯)。超导材料具有引人注目的用途。因为超导体没有电阻,在电流流过时就不会因为发热而损失电能,因此采用超导电线可以实现远距离无损耗输电,这样电站就可以远离居住区,使我们的生活区更加洁净。超导体中每平方厘米可以流过几十万安培的强大电流,因而可产生很强的磁场而且消耗的电能很少。日本用超导体产生17.5万高斯的强磁场,加上冷却用电也仅为15KW。这种强磁场是实现受控热核反应的关键之一。用超导体制成的超导发电机的功率可比目前发电机高100倍以上;超导磁悬浮列车的时速每小时已达550公里;高速超导电子计算机的计算速度每秒可达几百亿次以上。超导体有可能为我们这个世界带来新的技术革命,所以目前世界各国都把超导研究列为重点攻关项目,以期早日迈入超导时代。迄今为止,已有8位科学家因为研究超导体而获得了诺贝尔奖。半导体材料我们日常用的铜、铁、铝等,都很容易导电,因而叫做导体;而橡胶、塑料等几乎不导电,因而叫做绝缘体。如果某物质不是导体,那它就一定是绝缘体吗?答案是否定的。在导体和绝缘体之间还存在大量半导体,其导电能力居中,并且随温度升高而增大,随温度下降而减小。半导体分三种:本征半导体、p型半导体和n型半导体。不含杂质的纯净半导体叫本征半导体,它的导电能力很差。为了提高纯质半导体的导电能力,常常在本征半导体中掺入少量杂质。如在硅中掺入硼,硅原子周围就形成可移动的空穴,这就是P型半导体;如果在硅中掺入磷,材料中就会出现多余电子,这就是n型半导体。它们各有自己的特性,常常联合使用。人们为了获得所需要的半导体,就必须制得纯净的本征半导体。目前,人们所获得硅的纯度已达14个9,即99.999999999999%。这是人类材料史上的一个奇迹。半导体材料有许多奇妙用途,在各个领域发挥重要的作用,无论是收音机、电视机,还是大型计算机、工业电气化系统,都离不开半导体材料。半导体材料是制造电子元件的主要材料,而我们用的收音机、电视机、电子游戏机以及工业用的电子计算机、机器人等,都是由无数的电子元件构成的。半导体材料制成的电子元件不仅功能强、效果好,而且重量轻、寿命长、耗电省。1946年,美国研制出世界上第一台电子计算机,使用了18000个真空电子管,1500个继电器,重量达30吨,占地面积170平方米,真是一个庞然大物。而现在运算速度比它快得多的微型计算机,还没有一张书桌大。电子元件的发展已经历了四个时代,1947年美国的布拉坦和同事制成了晶体管,这是第一代。晶体管因性能优于电子管而被广泛使用。1962年,在一小块硅片上制成了几个元件组成一个小型电路,这就是小型集成电路。集成电路体积小而功能大,因而迅速发展起来。1965年发展到中规模集成电路,指甲大的一块硅片上可制作上百个元件。1968年出现了大规模集成电路,在5~7平方毫米的硅片上制成了上万个元件。1979年日本在6平方毫米的硅片上制成了15万个元件,这就是超大规模集成电路。目前人们正在研制三维集成电路。前几代集成电路都是平面式的,像一排排的平房。而三维集成电路则像高楼大厦,在一层元件上再重叠一层元件,这样,每个元件与周围元件的联络构成一个空间网络,便于信息的传递和处理。用这种三维集成电路也许可以模拟人脑的思维,如果是这样,那么我们就可以制造出会思考、会自行解决问题的机器人了。半导体材料具有良好的光电转换效应,是制造光电电池的好材料。有了廉价高效的光电电池,我们才能充分利用清洁的太阳能。有些半导体材料的温差电动势很大,能直接把热能转换为电能。这种温差发电机适用于缺电的边远地区。在宇宙飞行器、导航设备上也用到它。半导体材料还用于制造激光器。激光方向性好,能量集中,在现代各个行业都得到广泛应用。大功率的激光武器为各国所重视。用半导体制成的发光二极管,在光纤通讯方面有重要用途。光纤通讯比微波通讯效果更好,一条光缆可载上亿门电话。人们预计,光计算机将比电子计算机运算速度快几十倍。半导体材料经过几十年的发展,已历经三代,最早人们用锗,但锗元件的寿命和效果都不大理想,人们转而重视开发硅,目前硅已成为应用最广泛的半导体材料。为了在高温、高频领域取得进展,人们又看重砷化镓。它是砷在高温下和镓结合生成的化合物,是高频、高温电子元件的理想材料,它必将在巨型计算机、高效机器人、激光、光纤通讯等方面发挥重要作用。无机非金属材料无机非金属材料以前主要指含有二氧化硅酸性氧化物的硅酸盐材料。陶瓷、玻璃、砖瓦、耐火材料、水泥等都是人们所熟悉的硅酸盐材料。经过几十年的发展,无机非金属材料早已超出硅酸盐的范围而日趋多样化。无机非金属材料有广泛的用途:化学工业需要不怕腐蚀、耐高温的陶瓷、玻璃设备;电力工业需要绝缘材料,而不导电的陶瓷是理想的绝缘材料;照明器具需要大量的玻璃;建筑行业需要大量的砖瓦水泥;而冶金工业则离不开耐火材料。虽然金属材料和有机材料发展迅速,但却取代不了无机材料,因为在耐高温性能上,无机材料几乎是不可替代的。硅酸盐材料本身存在不少缺点。如陶瓷、玻璃都易碎,高温下会软化等,使它的应用受到限制。近十几年来,人们对硅酸盐材料进行了深入细致的研究,采用新技术新方法制成的硅酸盐材料与往日已不可同日而语。它们性能不同,异彩纷呈,为无机非金属材料带来了革命性的变化。下面我们就分别介绍这些材料。陶瓷在远古时代,我们的祖先就开始用粘土作成器皿盛装食物,后来人们发现这些器皿经火烧后,更加坚固耐用,这就是最初的陶瓷。在我国的半坡村氏族遗址中已有了精美的彩陶盆。我们的祖先对制陶技术不断加以完善,生产出图案精美、色泽鲜艳的陶器,出口世界,深受各国人民喜爱。我们中国的英文名字China,就是瓷器的意思。陶瓷的主要原料是粘土、长石、石英石等。先把它们磨成粉,再按一定配方混匀,加工成型,然后送入窑内高温烧结即可得到陶瓷。如果在毛坯上涂上各种釉质,刻上花纹,就可烧得精美的花瓶、盆、碗等日用品。陶瓷硬度高、耐高温、抗腐蚀,因而在工业上有广泛用途。1924年德国科学家以纯氧化铝为原料烧结出坚硬非凡的氧化铝陶瓷。这种陶瓷作成的刀具,甚至能切削硬度较高的合金钢。第二次世界大战以来,人们普遍用氧化铝陶瓷做火花塞。发动机的火花塞每秒引爆20~30次,瞬时温度高达2500℃,最大工作压力达100个大气压。在如此恶劣的条件下,氧化铝陶瓷仍能正常地长期工作。1957年,美国通用电气公司的工程师选用纯度达99.99%的氧化铝细粉作原料,烧制出半透明的陶瓷。用它制成的高压钠灯,亮度高、寿命长、清晰度高,能透过浓雾。导弹飞行的速度是声速的5~6倍,由于空气摩擦会使导弹头部温度高达1000℃。为了准确命中目标,导弹头部装有自动跟踪系统,能根据目标所发出的红外射线而自动调整飞行方向。什么材料既能耐1000℃以上的高温,又能透射红外射线呢?这就是著名的红外陶瓷。用纯净的原料通过真空热压或高温烧结,使陶瓷小晶粒迅速扩散而融合成晶莹透明的整体,就可得到能透射红外射线的透明陶瓷。氮化硅新型陶瓷是近十几年来发展起来的一种精密陶瓷。其制作方法是:把硅粉在1200℃高温的环境中氮化,使氮钻入硅粉坯体中,然后加工成型,再在1400℃高温下第二次氮化,即得氮化硅陶瓷。这种陶瓷具有足够高的强度和硬度,又有惊人的耐高温、耐腐蚀性能和抗急冷急热性能,是一种用途广泛的工程陶瓷。碳化硅陶瓷是另一种新型精密陶瓷。它质地坚硬,可作金刚石的代用品。人们采用热压烧结法得到的碳化硅陶瓷,在1400℃的高温下,其抗弯强度每平方厘米仍达5000~6000公斤以上,是制造高温燃气涡轮发动机的理想材料。1880年,法国科学家发现了某些晶体的压电效应,即沿晶体的某一方向施加压力,晶体表面会出现电荷,电荷大小与压力成正比。1944年,人们首次制得钛酸钡压电陶瓷,但性能不太理想。1955年,人们制得了性能较高的锆钛酸铅压电陶瓷。用这种压电陶瓷可生产大功率的超声和水声的换能器,也可作为高灵敏度的压电测量装置,在高频通讯技术、导弹技术、地震预报和医疗上都有广泛用途。这种陶瓷也是一种透明陶瓷,加上电场后具有双折射效应,去掉电场后又变成各向同性。用它可制成立体电视眼镜,戴上这种眼镜,你就可以看到立体电视或电影,医生用这种眼镜可以通过电视看到病人体内的立体图像,便于诊断治疗。目前陶瓷研究的方向是研制高温陶瓷,以便它能在1500℃以上的条件下工作,这在空间技术和军事技术上都有广泛用途。陶瓷研究的另一个方向是提高陶瓷的韧性,主要是陶瓷基复合材料。在现代科技的催化下,古老的陶瓷技术又开新花。玻璃一队远行的商人在野外露宿,他们用几块石头垒成灶,生火做饭。在烈焰的烧烤下石头熔化了,锅里的水倒下来浇灭了火,人们只好重新生火做饭。第二天早晨,有人在浇灭的火堆里发现了透明的小球,这就是第一颗玻璃球。原来那些石头的主要成分是硅酸钠和硅酸钙,在高温下熔化后又被迅速冷却,原子还来不及结晶处于液体状态就凝固,形成了一种新的材料——玻璃。人类认识玻璃、制造玻璃已有5000多年的历史,但要生产精美的玻璃制品很困难,因此几千年来,它一直是一种奢侈品,供少数人作为炫耀的资本。玻璃真正成为大众化的材料是从本世纪初开始的。1908年,美国人发明了平拉法,1910年,比利时人发明了有槽垂直上拉法,才使平板玻璃的生产摆脱了手工的吹制法而迅速发展。1959年,英国的皮尔金格兄弟公司花了7年时间,耗资400万英镑,终于研制出浮法玻璃生产工艺,大大提高了生产率并且降低了生产成本。1971年,日本人研制出对辊法,又使玻璃生产大大前进了一步。早期生产的玻璃主要是钠钙玻璃,常用作窗玻璃。这种玻璃受热不均时易破裂,不能作化学仪器。1915年美国研制出硼玻璃,把它加热到200℃后立即投入20℃的冷水中也不会破裂。因此它很快成为一种重要的化学用玻璃。用碳酸钾代替纯碱作原料生产出来的钾玻璃,熔点高,也是一种优秀的化学玻璃。玻璃易碎,但如果在玻璃型材制成后进行特殊的淬火处理:即把玻璃加热到600~650℃以上,用油或其他介质使玻璃骤冷,就可使玻璃的抗弯强度提高7~8倍,这种玻璃打碎后成为小钝角形的碎粒,没有刺伤人的危验,这就是钢化玻璃,很适合作汽车等的车窗。在一般玻璃中加入少量的澄清剂,如硝酸钠、氧化砷等,就可使玻璃更加晶莹透明,这种玻璃又叫玻晶。用它作成的器皿精美华丽,深受人们喜爱。如果在玻璃配料中加入少量金、银、铜等金属盐类作晶核,诱使玻璃形成很小的晶胞,就可获得晶体颗粒在0.05~1微米(1微米=1×10-6米)的微晶玻璃。它晶格致密,强度高,抗弯强度是普通玻璃的7~12倍。微晶玻璃耐高温性能好,在1300℃时才会软化;耐热冲击,在900℃时投入冷水中也不会破裂;耐磨、耐腐蚀并且能透过微波用作导弹的雷达罩,也可用于生产特殊轴承。在微晶玻璃中加入感光金属盐类,就制成光敏微晶玻璃。它具有跟照相底片一样的功能,一经加热就会显示出图像来。这种玻璃在光刻、光蚀技术以及集成电路生产中非常有用。玻璃晶莹透明,是生产光学仪器的重要材料。13世纪时,威尼斯人用玻璃制成了眼镜,16世纪时,人们又发明了望远镜和显微镜,光学玻璃的高性能是这些仪器发挥作用的关键。1886年,德国科学家阿贝和肖特系统地研究了氧化钡、硼酸盐等对玻璃性能的影响,研制出高性能的光学玻璃,在生产和生活中得到了广泛应用。随着光学和化学的发展,人们又研制出性能更高,用途更广的光学玻璃。如在原子能工业中,在作为观察窗和观察镜的玻璃中就加入硼和镉的氧化物以吸收中子流,加入氧化钡、氧化铝以吸收γ射线。有色玻璃是一种常见的光学玻璃。古代人凭经验开始少量研制,到了20世纪,光学的发展揭开了有色玻璃滤色的机理,人们据此制成了各种光色玻璃,具有选择某些特定光线的能力。例如:为了保护珍贵书籍,应当避免紫外线的长期照射,人们采用含有氧化铬、氧化钒的玻璃作图书馆的窗玻璃,就可阻止紫外线进入书库。近年来人们根据光色互变原理制成了变色玻璃,它是在玻璃中加入卤化银并经适当热处理,使卤化银部分沉淀为微晶,当强光照射时,卤化银分解为卤素和银,使玻璃变暗,减少光线透过;当无光照时,卤素与银又结合为卤化银,形成无色晶体。这种变色玻璃作成变色眼镜和汽车前窗玻璃,对保护视力很有好处。最近人们又研制成功了单透玻璃,它只允许光线单向通过,从玻璃一侧看过去,一切清晰;而从另一侧看过来,则什么也看不见,这种玻璃作汽车车窗和办公楼窗户都很棒。玻璃纤维是20世纪30年代问世的新产品。用先进的技术把熔化的玻璃拉成细丝,就成为玻璃纤维。随着技术水平的提高,玻璃丝越拉越细,已超过羊毛和棉纱,从此玻璃制品告别了脆性而成为抗拉强度很高的纤维。用玻璃纤维制成的绳子、缆等比钢绳轻,在建筑、航海上有广泛用途;用玻璃纤维制成的布,既耐高温又不怕腐蚀,并且具有绝缘隔热性能,因而在电机、化工、冶金、交通、国防等部门都受到青睐。光导纤维也是一种玻璃纤维,它用一种折射率较高的玻璃作芯子,用另一种折射率较低的玻璃作包皮,套制而成。由于玻璃的光学特性,光可以通过光导纤维向远方传递,就像电线传递电信号一样。光导纤维愈细愈纯,在传输中光能的损耗就愈少。光导纤维传递信号的能力很大,一根比头发丝还细的光导纤维能传递上千路电话;光缆根本不受电杂音干扰,可以和电线捆在一起而不失真,并且重量轻,占地少,特别适合作高效的通讯交流使用。光纤通讯技术将是通讯史上的一次重大变革,目前各国都在努力研究。水泥水泥是一种水硬性材料,普通建筑材料遇水会松垮,而水泥着水后却逐渐结硬而生成坚硬的人造石,在水泥中掺入砂子后用水调成砂浆,对砖瓦、石头等有良好的粘着力,用来砌墙,是一种很好的粘合剂。水泥和砂子、碎石掺在一起加水搅拌就成为混凝土,它具有很好的抗压性能,但抗拉强度差。用水泥包着钢筋后生成的钢筋混凝土,则具有优异的性能,它开辟了建筑史上的一个新纪元。多少巍峨矗立的高楼,多少凌空飞架的桥梁,都是钢筋混凝土结构。普通水泥的主要成分是硅酸盐,是用粘土和石灰石在回转窑内烧制成的,是普通建筑的常用材料。按国家标准,普通水泥分六个标号,即200,250,300,400,500,600。水泥标号越高,强度越高,可根据需要选用。普通水泥的耐磨和耐高温性能尚不能令人满意,于是人们又开发了各种高性能水泥。在普通水泥中掺入20%~50%的火山灰,得到的火山灰水泥非常耐冲刷,是建筑水库、水电站的好材料;在普通水泥中掺入20%~85%的高炉矿渣,制得的矿渣水泥可耐高温;在普通水泥中加入石膏和膨胀剂,可制得膨胀水泥,在隧道、涵洞修补上极为有用。目前每年全世界水泥的产量已超过8亿吨,可见水泥之重要。人们正在开发各种特殊水泥,如耐油防水的抗渗水泥,抗酸碱腐蚀的耐酸碱水泥,能阻止放射线渗透的放射物的包封用水泥等等。耐火材料耐火材料是指能耐1580℃以上高温的材料,钢铁工业、有色金属工业的冶炼炉,发电厂和铁路机车的锅炉,炼焦工业的炼焦炉,制造水泥、玻璃、陶瓷、砖瓦的窑炉,都少不了耐火材料。耐火材料种类繁多:耐火砖是最常用的一种,它的化学成分主要是氧化铝和氧化硅,它可耐170O℃的高温,广泛用作锅炉的内衬砖。高铝砖可耐1800~2000℃的高温,抗化学侵蚀和抗磨蚀能力都大大超过粘土砖,可作高炉和加热炉的炉底材料。镁砖含85%以上的氧化镁,耐碱性腐蚀能力强,但抗急冷急热性差。铬砖耐高温,抗碱性化学侵蚀能力强。硅砖主要用在炼钢炉、炼焦炉和玻璃窑上。碳砖则大量用于高炉炼铁。除了成型的耐火材料外,还有不定性耐火材料,作为补炉时的修补胶合剂。另一种是耐火纤维制品,它重量轻,耐高温抗腐蚀,因而在电炉、铝电解槽、熔炼炉上广泛应用。随着高温工业的发展,过去的一些耐火材料逐渐被淘汰,人们预计,未来二三十年内,会出现有机物、金属和无机陶瓷的复合耐火材料。发光材料无机材料中有一类非常重要的材料叫发光材料,日光灯、夜光表、电视机中都有发光材料的身影。发光材料可分三类:(1)仪器用发光材料夜光表上的夜光粉就属于这类材料,它以硫化锌为基质,加入激活剂、助熔剂,在700~1000℃烧结成块,粉碎到一定细度后再加入1/10000的放射性物质(如镭盐或钍盐),再加上粘合剂就可以使用。它是靠放射性元素蜕变时发出α射线而激活发光材料,产生永久性荧光。(2)灯用发光材料最常见的是日光灯中的发光粉,这是一类以碱土金属(钙、锶、钡、镁)的硫化物或氧化物按各种配方制得的暂时性发光材料,在高压电流的激活下发出荧光,目前几乎已研制出所有色彩的荧光粉,并且发光效率非常高,现在各国都在竞相研究高级发光材料。(3)阴极射线发光材料这种材料主要是电视荧光屏上所用的黑白电视荧光粉和彩色电视荧光粉,它们也多以碱土金属的硫化物作基质,加入不同的激活剂而制成。彩色电视机为什么能显示天然色调呢?原来任何色彩都可分解为不同比例的红、绿、蓝三种原色。在拍电视时,彩色摄像机把彩色图像分成红、绿、蓝三幅单色图像,由电视塔系统把三幅图像变成单一的电讯号发出去。当我们在家里看电视时,彩色电视接收机把这种电讯号变成代表三种色调的电子束,电子束投射到荧光屏上,激活荧光屏上相应颜色的发光材料,于是又组合为拍摄时的天然色彩,我们就见到了原来的彩色世界。彩色电视机的荧光屏上每1毫米的距离上要刻三条沟痕,每条沟痕上涂不同的发光材料,制作工艺复杂,所以彩电要比黑白电视贵许多,但彩电更可爱,你说是吗?另一种非常重要的发光材料叫化学冷光源材料。一般灯泡要把灯丝加热到3000℃左右才能发光,并且只有少量的电能转化为光,如白炽灯的发光效率仅10%,其余90%都变成了热量,这种光叫做热光。你一定在夏天的夜晚见过荧火虫吧,它一闪一闪地飞来飞去,像提了一个小小的灯笼。荧火虫发出的光是冷光,它不会产生热,并且发光效率达100%,它是由荧火虫体内的生物活性物质——荧光酶去催化荧光素而发出冷光。化学冷光源发光效率高,节约能源,不产生热,特别适合在露天广场、交通要道以及要防止产生热的仓库、精密仪器上使用。各国科学家在冷光研究上已取得了许多成果,我国研制出一种草酸脂——过氧化氢体系的化学冷光材料,只要在其中加入少量荧光素溶液,就会发出化学冷光。人们在发光材料领域已展开了深入的研究,随着科技的发展和人们生活的需要,此领域必将会产生更多更好的品种。无机合成高分子无机合成材料是无机材料家族中的一个新的分支,近十几年来得到了迅速发展。由于其原料主要来自地质资源,如各种岩石、砂砾、粘土、矿物等,因此人们也称之为地质化学工业。1973年人们发现了聚硫化氮,它具有金属光泽和导电特性,它在室温下的导电性与汞相近,在接近绝对零度时变成超导体。更奇妙的是它的电导率有方向性,在沿线型高分子链的方向上的电阻是垂直方向上的1/10。另一种无机高分子是聚偶氮磷化合物,它的性质类似硅橡胶,可作橡胶制品。它能耐极低温,在-150~250℃之间能长期使用。它具有很好的生理稳定性能,如果把药物掺入此化合物中制成聚合物药片,可使药剂缓慢释放到人体内,既延长了药效,又稳定了血液中的药量。无机高分子是一个较新的课题,各项研究工作才刚刚展开,有志于此的青少年朋友不妨多留意这方面的新进展。有机高分子材料人工合成有机高分子材料,是近代科学技术的重大突破之一。以往人们所使用的金属、陶瓷等材料,都是直接取自大自然的天然物质,或者是把一些天然物质进行冶炼、焙炼加工而成。而人工合成材料则是人类摆脱自然的“恩赐”而靠自己的智慧创造出来的崭新的材料。高分子化合物是含有很高分子量的化合物,一个分子往往含有几十万、几千万甚至更多的原子,这些分子是形状细长的链,链相互纠缠,分子间吸引力非常强,因此使高分子具有一定的强度和弹性。高分子受热时,长链不易传热,熔化前有一个软化过程,因而具有良好的可塑性,同时它还具有良好的电绝缘性。这些特殊性能使高分子材料成为现代的新型优质材料。有机高分子材料包括塑料、橡胶、纤维、液晶材料等。塑料塑料在我们的日常生活中随处可见。塑料袋、塑料鞋、塑料盆等,应有尽有。在工业上,塑料广泛用作管道、外壳及机械零件。全塑汽车也开始出现在马路上奔涌的车流中。塑料是指以合成树脂为主要成分,加入某些添加剂后构成的一类可塑性高分子材料。塑料完全是人造材料,自然界中找不到一块天然塑料。树脂是生产塑料的原料。我们常见的松香是一种天然树脂。但生产塑料用的是合成树脂,它是把低分子量的化合物经各种化学反应聚合成分子量成千上万的高分子量化合物,塑料一般以生产它的合成树脂来命名。能够发生聚合的低分子量化合物叫单体,它们的主要成分是碳和氢,在一定条件和催化剂作用下,单体聚合成以碳原子为骨架的长链,就叫聚合物。形成的分子链可以是自然蜷曲的线型长链,也可以是长主链和短支链构成的枝型链,还可以是靠支链使主链交联成网状或体形的结构。链的结构不同,塑料性质不同,聚合程度不同,聚合物的分子量不同,合成树脂的性质差异很大。一般随分子量增加,化合物从气体、液体再变成固体,并且强度增大。塑料按其性质可分为热塑性塑料和热固性塑料。热塑性塑料的分子链为线型或枝型链,一般受热变软或变成粘稠体,在加热条件下可塑化成形,并可重复变形。热固性塑料的分子链呈网状,在加热之初它具有流动性,继续加热会发生化学反应,生成网状链,此时原料固化,不能用加热的办法使它再具有可塑性。塑料按实际使用情况可分为三大类:通用塑料,这类材料产量大、价格低、用途广,占塑料产量的3/4以上。它包括五大品种:聚烯烃、聚氯乙烯、聚苯乙烯、酚醛树脂和氨基树脂。工程塑料,这类材料强度较高,能耐一定的高温和低温,可代替金属制造机械零件。这类塑料有聚碳酸脂、聚酰胺、聚甲醛。耐高温的特殊塑料,价格高、产量少,只用在特殊场合。塑料之所以发展如此迅速,应用如此广泛,是与它的优异性能分不开的。塑料的共同优点是:可调性好,可通过各种物理、化学手段来改变它的性能。质轻,在飞行器等方面有极大优点。电性能优良,既可作良好的绝缘体,也可制成半导体、导体。耐一般的酸碱腐蚀。容易加工成型。制成品的表面可喷涂、电镀金属。塑料品种繁多、各有特点,而且不同品种可以通过掺合、共混、共聚、增强等办法来改善其性能,以满足使用上的不同要求。(1)普通塑料最早合成的塑料是酚醛树脂,1907年,美国化学家贝克兰用苯酚和甲醛缩合,再添加木粉等填料而制得。酚醛树脂性脆,加入木粉能显著提高机械强度,加入云母粉能提高电绝缘性能,加入石棉粉能提高耐热性能。它常被用作电器制品的材料,故又称为电木。其制品不透明,坚硬不怕热水烫,在火焰中不燃烧,是制造许多日用品的好材料。1928,人们年用氯乙烯和醋酸乙烯共聚得到了具有一定塑性的聚氯乙烯塑料。它具有高度耐腐蚀性、绝缘性和一定的机械强度。它在工业上用作耐腐蚀的设备,如阀门、管件等;在日用品中用作鞋底、皮包、雨衣等。聚氯乙烯受热软化,受冷变硬,可多次重复利用,是最常见的热塑性塑料之一,它的产量在早期一直居塑料品种中的首位,直到1966年才退居第二位。1930年,德国合成了聚苯乙烯。它具有良好的绝缘性,用作电视、雷达所需的高频绝缘部件。它成型方便,着色鲜艳,适合作漂亮的日用品。1960年后,各种塑料中产量跃居首位的是聚烯烃,主要是聚乙烯、聚丙烯。1953年,德国化学家齐格勒发明四氯化钛——二乙基铝的催化体系,在常温常压下就可制得聚乙烯,使生产成本降低25%左右,催化效率提高几百倍,生产出的产品的电绝缘性、柔软性和耐腐蚀性及机械强度都很好,因而得到了广泛利用。1955年,意大利化学家纳塔改进了齐格勒的催化体系,制得聚丙烯塑料。它综合性能好,原料丰富,工艺简单,因而发展最快。用它可制造汽车零件、电视机零件和食品包装袋。齐格勒和纳塔因为对高分子发展的划时代贡献而获1963年度诺贝尔化学奖。(2)工程塑料工程塑料大约只占塑料产品的20%,产量虽不及塑料,但它具有较好的机械强度,制造容易,耐大气腐蚀,不会锈蚀,能耐一定温度的高温,因而越来越多地取代传统金属材料。工程塑料常用的几个品种是:①聚碳酸脂。它是60年代发展起来的透明的热塑性塑料。它的抗冲击韧性大大优于有机玻璃,透明度为85%~90%(有机玻璃为92%),因此大量用于制造超音速飞机的风档和座舱罩。由于它电绝缘性好,制造工艺简单,因而大量用于制造电容器,制得的电容器晶莹透明、美观耐用,性能优良。②尼龙。尼龙是聚酰胺树脂类塑料的统称,属热塑性塑料。常见品种有尼龙610、尼龙6、尼龙1010、芳香尼龙和浇铸尼龙等。尼龙具有优良的耐磨性、耐油性,强度较高以及优良的韧性、刚性,抗蠕变性等。用旧了的尼龙材料还可熔化再生利用。近年来,各种仪表、电视机、录音机、收音机的零件大量采用尼龙材料。尼龙塑料还可喷涂和电渡,使零件更加美观耐用。尼龙的使用温度在-60℃~100℃之间。③聚甲醛工程塑料。聚甲醛工程塑料具有优良的综合性能,强度超过铝、锌等金属,润滑和耐磨性可与尼龙媲美,能用多种方法成型,耐有机溶剂,耐水性好。它被大量用作输油管材料。它还具有独特的回弹能力,可制成塑料弹簧、减震垫圈。④ABS塑料。把苯乙烯和丙烯晴、丁二烯等原料用共聚或混炼的方法加工,可制得ABS树脂,再加工即得ABS塑料。它既保持了苯乙烯塑料晶莹透明的质地,又增加了强度,因而大量用于电子工业。近来人们也用它作汽车的整体车身和飞机内部的装饰材料。(3)耐高温塑料耐高温塑料在整个塑料产品中产量不到5%,属于尖端产品,是各国竞相研究的热门课题,预计本世纪末有可能使塑料产品使用温度达到1000℃。耐高温塑料主要包括氟塑料、有机硅聚合物、芳香杂环塑料等。氟塑料指聚四氟乙烯、聚三氟氯乙烯等。聚四氟乙烯被称为“塑料王”,它耐热耐寒,可在-200℃~250℃的温度范围内使用,绝缘性好,抗腐蚀,它能耐王水和浓碱腐蚀,并且具有良好的自润滑性能。在机械部门常用作耐磨材料,在化工上大量用作泵、阀门、管件接头的密封材料。有机硅聚合物是用硅制成的硅树脂、硅油、硅橡胶等一系列材料的总称,它在聚合成高分子材料后,分子链节中有硅——氧键,因此它除具有高分子的塑性、韧性和弹性外,还具备更高的耐热性、刚性和硬度。硅油对可见光100%通过,可涂在光学镜头上以增加透光率,提高照片清晰度。电动机经硅树脂处理后,可提高马力,使每台电机节约40%的硅钢。用有机硅聚合物制成的人造器官植入人体后不会发生排异现象。合成橡胶橡胶是一种天然高分子材料,它是橡胶树的树汁经过处理而得到的一种材料,人类早在11世纪就有了关于橡胶球的记载。橡胶的主要特点是它的拉伸弹性和压缩弹性,因而在日常生活、工业和国防等领域有重要用途。一辆汽车要用200公斤橡胶,一辆坦克要用800公斤橡胶,一艘3万吨级军舰要用70吨橡胶。而一棵小橡胶树要6~8年才能割胶,一亩良田种橡胶树一年才能收20公斤生胶,天然橡胶远远满足不了需求。于是,人们把目光投入人工合成橡胶。1912年,德国采用二甲基丁二烯为单体首次合成了甲基橡胶。但它成本高,耐压性能差。30年代初,美国和苏联研制成功丁钠橡胶,其性能优于甲基橡胶,但远不如天然橡胶。于是人们加紧丁钠橡胶的改性试验,1937年研制出与天然橡胶性能相近的丁苯橡胶,1940年研制出比天然橡胶性能优越的氯丁橡胶,50年代又研制出了顺丁橡胶。目前人们认为最有发展前途的是顺丁橡胶、异戊橡胶、乙丙橡胶。橡胶大体上也分为通用橡胶和特种橡胶两类,但二者之间没有明显界限。(1)通用橡胶通用橡胶主要指用于轮胎制造和民用产品方面的橡胶,产量占合成橡胶的50%以上,主要包括丁苯橡胶、异戊橡胶、乙丙橡胶、氯丁橡胶等。丁苯橡胶是通用橡胶中的老产品,已有50多年的历史。它具有较好的耐磨性、耐老化性和抗氧化能力,比天然橡胶质地均匀,可以任何比例与天然橡胶混合使用,还可大量加入填充材料。填充30%~70%的矿物油后,它的成本降低20%,寿命提高20%。它可用于生产各种雨衣、胶鞋、海绵制品等。顺丁橡胶是发展十分迅速的一个品种,它能掺油或掺大量碳黑。其性能比天然橡胶好,用它制造的轮胎比用天然橡胶制的耐用2倍以上。顺丁橡胶大量用于生产三角皮带、橡胶弹簧、耐热胶管、鞋底等。乙丙橡胶1960年才问世,其主要原料是石油副产品乙烯、丙烯。它的性能和天然橡胶相近。耐氧化、耐老化,绝缘性能好,在-68℃~66℃范围内都可使用,并且颜色浅,大量用于生产电缆和民用产品。氯丁橡胶可以从电石中制取。电石用石灰石加碳在电炉中熔炼出来,电石加水生成乙炔,再生成氯丁二烯,再聚合成氯丁橡胶。它具有天然橡胶所没有的优点,耐腐蚀,耐老化,不易燃,难溶于汽油等有机溶剂,在军事应用上很有价值。(2)特种橡胶作为特殊用途的橡胶性能要求很高,如需耐200℃以上高温或-120℃以下低温而性能不变,或者具有高度绝缘、耐辐射、耐真空的特性。这些方面是大家都关注的焦点。特种橡胶中产量最大的是丁腈橡胶,它是由丁二烯和丙烯腈在水乳液中进行共聚而生成。它的特点是耐热性和耐油性好,多用作油箱油管材料,当充填石棉后可作汽车刹车片。硅橡胶是一种新产品,它的分子链不是碳原子构成的,而是硅原子和氧原子交替连接构成分子的骨架。它既耐热又耐寒,在-100℃~300℃的温度范围内可长期使用,是飞机和宇航工业不可缺少的原料。它的绝缘性好,广泛用于生产高精密仪表元件。氟橡胶不仅能耐低温,而且在低温下还有很好的弹性。它是材料学家根据氟塑料的特点设计的,价格昂贵,产量少,只用于军事和航天工业。(3)液体胶乳和粘结剂生活中我们还常见的另一类橡胶制品是薄膜制品,如医用手套、探空气球、飞艇、雨衣等,它们都是用液体胶乳制成的。液体胶乳是用橡胶单体直接聚合成的胶乳,每一种合成橡胶,都有一种对应的液体胶乳,其中以丁苯胶乳产量最大。液体胶乳使用很方便。把硫化剂先加入胶乳中,然后把胶乳涂在织物上,烘烤到一定温度,胶乳就硫化固定为胶膜了。合成胶乳除了生产薄膜和海绵制品外,还用于合成革、无纺布、防寒棉、船底涂层和火箭发射的弹性水泥平台等方面。液体胶粘剂又叫液体橡胶,是一种低分子量的聚合物,广泛用于粘结各种金属、塑料、皮革、书籍等。纤维纤维材料包括两大类:一类是天然纤维,包括植物纤维棉、麻等和动物纤维羊毛、蚕丝等;另一类是化学纤维,包括人造纤维和合成纤维。我国的丝绸很早就闻名于世。从公元前2世纪起,我国的丝绸沿着横贯中亚的“丝绸之路”出口到欧、亚、非洲,促进了我国和世界各国的交往和交流。到了北宋时期,著名的女纺织革新家黄道婆改进了纺织技术,使棉纺织业在我国得到了发展。天然纤维资源有限,每亩良田年产皮棉不过50公斤左右,一只蚕茧只能抽生丝0.5克左右,而世界人口不断增加,对纤维的需求也在增加,但又不能用大量的良田去种植桑麻棉,因为人们要种粮吃饭。解决粮棉争地矛盾的出路就在于发展化学纤维。现代的合成纤维工业以石油、天然气为原料,产品性能优异,花样繁多,深受广大消费者喜爱。(1)人造纤维人造纤维也叫再生纤维,是用一些本身含有纤维的物质,如木材、棉籽短绒、棉秆、甘蔗渣等,或含有蛋白质的物质,如大豆、花生、玉米等,经过化学处理和一系列的机械加工制成的。人造纤维具体指人造棉、人造丝、人造毛等。最早出现的人造纤维是粘胶纤维,它是1891年人们用木材、棉绒等为原料加工得来的。用它制成的衣服穿着舒服,透气性好,但缩水率大,不耐磨也不耐晒。后来人们又研制出铜氨纤维、醋酸纤维等,但人造纤维原料有限,产品性能不太优越,因而逐步让位于后起之秀——合成纤维。(2)合成纤维合成纤维是把一些本身并不含有纤维素或蛋白质的物质,如煤、石油、天然气、水、空气、食盐、石灰石等,经过化学处理制成的纤维。合成纤维跟橡胶、塑料同属高分子化合物,不同之处表现在:作纤维的树脂多属线型分子链,没有或少有支链。这类树脂能溶于溶剂而抽成丝,或者能加热熔融而抽丝,但加热时其结构并不被破坏。这类树脂的分子间内聚力是所有高分子中最大的。合成纤维生产的第一道工序是纺丝。纺丝工序的关键是喷丝头,它一般采用耐高温耐磨的材料制成。在一个喷丝头上钻有几十个到几万个直径为0.04~1毫米的小孔。熔融纤维从小孔喷出经冷却就得到很细的丝,抽出的丝再经过牵伸和热定型工序就可用于生产各种产品。合成纤维具有天然纤维所没有的一系列优良性能。它强度高,耐磨、耐虫蛀,比重轻,保暖性好,一般能耐酸碱腐蚀。合成纤维以六大纶为主:①聚酰胺纤维。我国称为锦纶,是最早上市的合成纤维。主要品种有尼龙66,尼龙6,尼龙610等。1940年第一批尼龙丝袜上市,就震动了纺织市场。锦纶纤维耐磨,强度大,回弹性能好,但耐热耐光性能差。锦纶大多用于制造袜子、衬衫等。工业上用作重型汽车和飞机轮胎的帘子线、绝缘材料,也用于制造缆绳、渔网、降落伞、高级地毯等。②聚脂纤维。我国又称为涤纶(的确良),早在1940年英国就已能合成,但直到1946年才实现工业生产。涤纶纤维强度高、耐磨,混纺后制成的衣服耐穿,抗皱好洗,因而发展迅速。到70年代初,产量居合成纤维第一位。③聚丙烯腈纤维。我国又称为腈纶、合成羊毛。它是1950年问世的,它的耐光性、保温性、弹性都很好,手感柔软,强度比羊毛高,价格比羊毛低,不怕虫蛀,耐晒又耐洗,适宜于制作衣料,针织外衣、毛毯、工业用织物等。④聚乙烯醇纤维。我国又称为维纶,它的性能近似于棉纤维,耐磨性强于棉纤维,是合成纤维中吸水性最高的一种,但耐热性和弹性较差。⑤聚丙烯纤维。又叫丙纶,比重小,强度较高,耐光照。⑥聚氯乙烯纤维。又称氯纶,它耐化学腐蚀力强,保暖性好,难燃烧。合成纤维主要用于民用消费品,但也有一部分用于工程技术。宇航、冶金、化工等部门,不仅要求纤维综合性能优良,而且需要耐高温和抗强腐蚀。合成纤维的出现,正好填补了这一空缺。人们经过多年研究,已取得不少成果。芳纶—1313纤维,能在200℃下长期使用,它的强度是强力锦纶的2倍。它首先被用于制造宇航服,还大量用作登山索具、高温过滤袋、飞机轮胎帘子线等。芳纶—1414纤维,能在290℃下长期使用,560℃才分解。它的强度是合成纤维中的冠军,断裂强度是锦纶的3倍,手指粗的一条纤维绳,就可以吊起两辆解放牌汽车。因此多采用它作复合材料的增强纤维,特别适合于生产飞机、导弹的雷达罩。聚酰亚胺纤维能在-273℃的超低温下使用,也能在400℃的高温中正常工作,能承受冷热剧变而不影响强度。用聚皿氟乙烯抽丝制得的氟纶纤维,能耐王水的腐蚀。在-160℃~280℃的温度范围内都可使用,用它增强的复合材料作自润滑轴承在飞机上使用非常合适。(3)合成皮革和合成纸从显微结构看,皮革和纸张都属于平面型的纤维交织物。皮革纤维是强韧的胶原蛋白纤维,经鞣革剂作用而形成强固的网状结构。纸张的纤维是植物性纤维,在造纸过程中,这些植物纤维互相纠结而形成网络结构。合成革就是把树脂涂在底物布上制造出来的树脂薄膜。但它没有微气孔,不透汗,穿起来不舒服。后来人们在合成革中加入聚氨脂,聚氨脂在凝固过程中就会产生微气孔。这种合成皮革具有像天然皮革一样的透气性,但比天然皮革耐用得多,它又可装饰成各式各样的真皮外表,因而很受欢迎。普通纸的强度一般不高,且易被虫蛀,又不耐酸碱。人们用人造纤维为原料制成聚合薄膜,再经纸化工艺,就可得到合成纸。目前已有用于描图的描图纸,用于印刷制版的铜版纸,不怕日晒雨淋的广告纸问世,用这种纸生产的军用地图和防水海图,抗折抗皱,不怕水,战场使用很方便。如果用合成纤维为原料,按传统的造纸法就可造出合成纤维纸,它强度高,抗腐蚀,抗撕折,抗霉蛀,用作电池隔膜纸,既能提高电池寿命,又能改进电池性能。功能高分子材料功能材料主要包括功能高分子材料,跟能源有关的材料,具有生理机能和生物活性的材料,以及具有“感觉”和“记忆”功能的材料。这些材料不是利用它们的机械强度来作设备或器物,而是利用它们的物理和化学的特殊性能,如光电效应、生理机能、催化活性、记忆功能等。高分子材料是功能材料的主要部分。(1)医用功能高分子材料用人造材料来再造人体的组织和器官,用以替换已经坏死或不能正常工作的器官,从而治愈各种疾病,是几百年来人类梦寐以求的愿望。要实现这个愿望有许多难题:首先,这类材料植入人体后,长期处于酸碱体液中,再加上体内酶的影响,材料的物理、化学性质容易发生变化,这要求材料具有高度的稳定性。其次,材料要具有一定的生理性能,在体内不致发生排异作用,不致引起过敏反应,如组织变态、发炎、凝血、致癌等副作用。经过多年研究,这方面已取得重大进展,人造血、人造皮肤、人造心脏等已经开始用于临床。氟碳乳液是一种人造血液,代号FC,它性能稳定,加乳化剂后成为乳化液。它的溶解氧的能力比血红蛋白大1倍,同时还能把二氧化碳释放出来,它吸氧和释放二氧化碳的速度都比血红蛋白快几倍,并且没有血型,对任何病人都可直接输入动脉。人造心脏主要由动力部分、血泵和监控系统组成,其中血泵是关键,制造血泵的材料要求机械强度高、无毒、不致癌、良好的生化稳定性和高度的抗挠曲性。具有这些综合性能的材料目前尚未找到,但人造心脏用于动物试验已取得部分成功。人工肾脏是研究最早而又最成熟的人工器官,关键是研制出高选择性的半透膜,可采用聚丙烯腈硅橡胶、赛璐玢、聚酰胺等,美国有个人移植人工肾已活了20多年,并担任了某学院的副院长。聚丙烯腈硅橡胶薄膜的选择透过能力很高,可用于制造人工肝脏;聚丙烯薄膜可透析血液中的二氧化碳,可用于制造人工肺,在日本,这种人工肺已使数十人获得了新生;用金属骨架外包超聚乙烯材料制成的人工关节,弹性适中,耐磨性好,在临床中已取得满意效果。(2)液晶材料1888年,科学家发现:有一些有机化合物的晶体,在加热到一定温度时会变成一种浑浊、粘滞的塑性物质,再升温至某一温度,又突然变成完全清澈透明的液体,这种介于固态和液态之间的物质就是液晶。目前已知有2000种以上的有机化合物具有液晶性质。液晶材料按分子排列的不同可分三类:①近晶型液晶。其分子排列整齐,近似于晶体,它对电和磁都不发生效应,尚未得到开发利用。②向列型液晶。向列型液晶的分子,在长轴方向排列一致,而层状却不整齐,像一把上下交错的筷子,当外加电场时,分子排列变乱,由透明转向浑浊,形成光的散射体。可用它制造电控亮度玻璃,如照相机上的自动光圈和数码显示器。③胆甾型液晶。它的分子排列是:一个个条状的分子层层相叠,错开一定角度,扭转成螺旋型结构。它除具有特殊的光学效应外,还具有显著的温度效应。随温度升高,其颜色按红、橙、黄、绿、蓝、靛、紫变化;温度降低,则按反方向变化。它的这种温度效应可用于金属的无损探伤和医疗上检查血栓和肿瘤。在工业上多把三种液晶混合使用,或者在混合液晶中加入添加剂,这样效果会更好。液晶材料体积小,耗能少,在电子计算机、电视、钟表、微波测量、医疗、宇航上有重要用途。日本1991年已研制出液晶显示的电影放映机,图像比普通电影清晰许多倍。1991年5月,在英国皇家学会庆典上展示了一件令人瞩目的紧身衣,它是用液晶材料制成的,它会随温度变化而变幻出五彩缤纷的颜色。在低温下为黑色,在28℃时为红色,在33℃时为蓝色,在28℃~33℃之间为其他颜色,这标志着液晶材料的发展已进入一个崭新的阶段。(3)其他功能高分子材料离子交换树脂和离子交换膜也是一种高分子材料。离子交换树脂是由聚苯乙烯、聚氯乙烯或其他树脂的高分子链为骨架,在主链或侧链上连上容易与金属离子或酸根离子相作用的基团,而生成的高聚物。它能把稀溶液中的离子固定在树脂上,达到淡化溶液的目的;反过来又可把固着在树脂上的离子洗脱下来,以达到富集或浓缩微量元素的目的。在实验室中它可用于生产超纯水和提炼微量元素。在工业上它可用于淡化海水或富集海水中的镭、铀、钚等原子工业的原料,也可用于净化废水、废气以回收有用物质,防止环境污染。另一种对光敏感的感光树脂在印刷工业上有重要的用途。这种高分子在光线作用下发生交链聚合作用生成不溶性树脂,未曝光的部分可用溶剂冲掉,由此得到的是具有立体浮雕式的图像,可直接用于印刷制版,使制版过程完全自动化。1964年,美国人洛普研制成一种有机硅聚合物薄膜,它能从水中离析氧气,也能可逆地离析二氧化碳。用这种薄膜制成容器放入水中,容器中的老鼠活了4天4夜。这种薄膜有鱼类鳃的功能,如能制出高效产品,也许人类就可以在深海里长期停留而不需要潜水设备。这样人就可以住在美丽的海底龙宫中了。高分子还可作为储能材料。人们已发现环庚二烯在吸收光能后变成环庚烷,当它释放出热量后又回复到环庚二烯。如果能提高其储能指标,将非常有用。1987年,人们用泡沫塑料加工出一种增大型生长聚合物,它的奇特之处在于:与一般材料受拉变细相反,它受拉后横截面变粗。1988年研制出的多孔聚四氟乙烯,泊松比为负12。这种材料作铆钉抗拉性好,用它作为密封、减震、吸音材料,也有优良的效果。复合材料金属材料,无机非金属材料,有机高分子材料,是人类大量使用的三大类基本材料,它们各以自身的特点,满足人类多方面的需要。随着现代科学技术的发展,人们对材料性能的要求越来越高。例如,空间技术需要耐高温、防辐射、重量轻、强度大的材料,电子技术需要电磁性能好、易加工、寿命长的材料。三大基本材料都有各自的缺点:金属材料大多不耐腐蚀,无机非金属材料较脆,有机高分子材料不耐高温。它们单独使用时难以满足现代技术的综合需要。一个行之有效的办法是把两种或多种材料复合起来,互相取长补短,以获得工程技术所需要的综合性能,这就是复合材料。现代复合材料,本质上是基体和增强剂的复合。基体的角色通常由合成树脂、塑料、橡胶、金属、陶瓷来担当,玻璃纤维、硼纤维、碳纤维起着增强剂的作用。复合材料按其结构特点可分为纤维复合材料、细粒复合材料、层叠复合材料及骨架复合材料。目前发展最快的是纤维复合材料。纤维复合材料玻璃钢是人们所熟悉的一种复合材料,它是本世纪40年代研制出来的。以玻璃纤维为骨料,以合成树脂作基本和粘结剂,加热压制成型就得到玻璃钢,其成品强度可与钢材媲美,比重仅为钢的1/5~1/4,耐高温、抗腐蚀、电绝缘、抗震抗裂、隔音隔热、加工方便。在航空、机械、汽车、舰船、建筑、化工等部门得到广泛的应用。1960年,美国人研制出了硼纤维,这是一种强度和弹性都比玻璃纤维更好的纤维材料。其制作过程是:把直径13微米的钨丝放入高温沉积钨内,在三氯化硼和氢气的混合气体里加热到1000℃以上,炉丝上连续沉积金属硼,就形成了钨丝外面包着硼的纤维,其强度是玻璃纤维的5倍。它既可与树脂复合又可与金属复合。用硼一环氧系复合材料作宇宙飞行器的结构材料比用铝和铝合金重量轻、强度高。用金属铝作基体的硼铝复合材料耐1200℃高温,用来制造飞机机体可使飞机重量减轻23%。用硼纤维补强的钛镍复合材料在军事和空间技术上起重要作用。碳纤维是最近十几年才发展起来的一种新材料。它可用聚合物纤维通过一定的工艺制得。把聚丙烯腈丝在200~300℃的空气或氧气中进行热分解,然后在1000℃的氢气中碳化,最后在2500℃的惰性气体中迅速加热,就可得到石墨化的纤维。这种碳纤维直径只有5~10微米,十分脆。人们用溴或一氯化碘来塑化纤维,经塑化的纤维可纺成纱、织成布,最后除去塑化剂,碳纤维仍保持原来形状。碳纤维的特点是高强度、高弹性模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电传热、密度小、热膨胀系数小。但它难与其他材料复合,所以复合前要首先作表面处理。用碳纤维增强的尼龙66有很好的韧性和良好的导电性,可作电荷分散体和导电体。其耐磨强度比用玻璃纤维增强的尼龙66高4倍。碳纤维增强的聚苯硫醚具有优异的抗拉强度,导电性提高,表面电阻降低,有优异的耐腐蚀和耐水解性能。用碳纤维增强陶瓷或玻璃,不仅能提高陶瓷或玻璃的强度,更主要的是大大提高了其韧性。这种增强复合材料在燃气涡轮机、火箭发动机上用于制作关键设备。用碳纤维增强金属能有效地提高材料的综合性能,是一项很有发展前途的技术。用碳纤维增强铝的复合材料的技术已经发展成熟,它生产成本低,材料的比强度、比刚度高,能耐高温,抗拉强度、耐磨性好,是电和热的良导体。因此在飞机、坦克、导弹、卫星等方面得到广泛利用。目前发展较快的还有金属纤维增强金属的复合材料。例如,用钨纤维增强铬铝钇铁合金而制得的复合材料,具有高温强度高,延展性好,抗氧化,耐腐蚀等最佳综合性能,是生产燃气涡轮机叶片、火箭发动机喷嘴、航天飞机鼻锥等的优质材料。混杂复合材料是把玻璃、碳等纤维按各自的特点组合起来,编制成粗纱、毡、布等,再与塑料、陶瓷等复合而成。这种办法的优点是成本低,能使各种材料的特性互补以获得较高的综合性能,并且还会获得意想不到的混杂效果,因而发展迅速。其他类型复合材料细粒复合材料的一个代表是金属陶瓷。它是由陶瓷相和粘结金属相所组成的非均匀复合材料。陶瓷相主要是高熔点的氧化物、硼化物、碳化物等,金属相是某些过渡族金属及其合金,金属相和陶瓷相之间并不发生化学反应,而是靠分子间的相互扩散和渗透而形成复合材料。它的特点是既具有金属的韧性、高导热性、良好的抗热冲击性能,又具有陶瓷的耐高温性能。因此它在宇航、化工、机械、冶金、国防等行业都大显身手。最早出现的层叠复合材料是夹层玻璃。它是在两层玻璃中间加入塑料等填充料粘结而成。在钢化玻璃产生前,这种夹层玻璃常用作汽车等的窗玻璃,在防止玻璃伤人方面起过积极作用。现在有的飞机也采用多层的有机玻璃作窗门,人们常用金属板夹高性能高分子材料作减振材料,以减轻振动和降低噪音。复合材料是材料领域的奇葩。它充分利用现有材料各自的优点,按科学的方法加以复合,使它具有各种材料的优点而克服其缺点,从而获得优异的综合性能。经过几十年的发展,复合材料已有三代:40年代研制的玻璃钢,是用玻璃纤维增强塑料,这是第一代。60年代后研制出的用碳纤维、芳纶、碳化硅纤维等增强树脂,属第二代。目前正在发展的纤维增强金属、陶瓷纤维增强陶瓷等,属第三代。在利用复合材料获得优异的结构性能的同时,人们也在努力开发具有各种功能的复合材料。这些材料具有奇妙的声、光、电、磁、热性能,在日常生活中、工业生产、航空航天、国防等领域都发挥着巨大作用。材料工程放异彩现代显微测试技术的迅猛发展,使人们在观测材料的结构时,能从晶体再细微到分辨出原子和电子,因而对材料所具有的独特的物理性质(电学、光学、磁学、热学、能量转换等)能够不断地揭示,给人类提供了设计新材料,改造、利用现有材料的依据。自然科学的进步和高新技术的旋风,为材料工程增添了异彩,已经培育出现代材料科学的灿烂花朵。而且由于高科技的涌现,人们已经制造出了许许多多性能奇妙的新材料,成为材料园地中的佼佼者。用于材料工程上的技术繁多,有离子束、电子束、激光束、电解、电镀、化学镀、高压力、快速冷凝等等,都在制备新材料方面做出了重大贡献。载能束巧夺天工载能束指的是电子束、离子束、激光束。将这些具有高能的束流强行注入材料内部,在材料的表层可以迅速加热到高温,也可以实现快速冷却,冷却速度达每秒1012摄氏度。这两种作用和载能束的本身都能对材料发挥奇特的作用。载能束本身的离子作为掺杂物质,掺入材料表面,能改变材料表面的成份。快速加热和快速冷却,会引起材料内部的结构变化,使原子重新组合,新的化合物可由此产生。1973年,迪利那利发明了用离子注入的方法把晶体合金转变成非晶合金(有关非晶合金的性质,在“繁星闪烁”一章中另行详述),这个方法是事先选择要注入合金晶体的元素,然后,把这些元素放入放电管,在放电管两端加上高电压,放电过程中使放入元素变成离子。这种放电管叫离子源所形成的离子进入磁质量分析仪,通过分析仪选出所需能量的离子,在高电压的电场下加速,使离子具有较高的能量(大约有几十万电子伏特),用这样的离子束流去轰击金属或合金表面。当注入的离子大于金属总原子量的10%时,可以使被注入的金属表面形成一层非晶态膜。非晶态膜比晶态金属的硬度要高几十至几百倍,这样就提高了材料的强度。高剂量的离子注入晶态金属或合金,导致晶态金属的结构受到破坏,使晶态表面产生极高的应力密度。因此,在这些非晶化的合金表面,得到高强度、高硬度、高韧性的特性,其成份结构和原来材料截然不同。这叫做材料的表面改性。但是,并不是任意注入离子和被注入的金属合金进行任意组合都能使材料表面非晶化。如果用被注入的合金的自身离子束注射,如铜离子注入金属铜,就不能形成表面非晶化。近年来,用离子注入法已制造出的非晶化表面的金属(合金)有:钨离子注入金属铜;钽离子注入金属铜;磷离子注入金属镍;磷离子注入不锈钢;金离子注入铂金;铁离子注入镝金属;镍离子注入镝等等。这些制造成功的金属,引起了人们的注意,有的已在工业生产中获得有效应用。离子注入技术可以通过束流的控制,实现金属表面的局部非晶化。使人们能进行随意操作,使用巧妙自如。如采用大面积的扫描离子注入,就可以获得人们梦寐以求的大面积金属表面非晶化的保护层,而且,在室温条件下就可以实现。离子注入的前景是非常美妙的。载能束改变材料表面的结构,可以大大提高材料的抗磨损性能。载能束加热的金属,可以在改性材料表面上形成扩散层,增加材料的抗磨、抗腐蚀的性能。如将铝蒸气扩散到钢上,铝的扩散层对钢起着很好的防护作用。1978年,英国哈威尔原子能中心的研究者N·E·W哈特勒公布了用氮离子注入能提高钢的抗磨能力,大大激起了人们的兴趣。目前,用氮离子注入人工髋关节材料钒铝钛(TiAL6V4)进行表面改性,已发现其耐磨性能提高到原来的1000倍,效果特别奇妙。激光表面处理在工业上已获得广泛应用,如对邮票打孔机的滚筒经激光处理之后,把一个滚筒原先只能打印150万张的记录提高到1500万张,就是一个成功的例子。载能束的表面改性技术,从精细工艺、精致图案到较大的面积,可以无所不包地解决表面改性问题,其效果被人们称颂不已,真可谓巧夺天上。制膜术交响曲当人们漫步在高科技的商品市场时,会惊奇地看到许多小巧美观、令人爱不释手的电子整机,如袖珍型电视机、盒式录相机、微型计算机等等。这些产品之所以小巧玲珑,是由于微电子技术的迅速发展。微电子技术已进入制作超大规模集成电路及其微组装阶段。在微组装中使用多层布线板、各种微型片式元件(包括各种集成电路)和表面安装技术(即纳米技术)。若剖析这些奇异的电子整机,不难发现,它们的各部分所用的材料基本上是薄膜,可见功能薄膜是微电子技术的基础。在高科技蓬勃发展的今天,向材料科学提出了特殊要求,其中之一就是要求提供性能极为稳定的控制和测量元件。宇航和生物医学要求的微型元件,特殊功能的高性能微元件,太阳能电池等,都要求制作出纯度很高,厚度是几百到几个微米的膜质优良、厚度均匀的功能膜。在高科技发展的大潮中,各种各样功能膜的制备,汇成了美妙的制膜技术交响曲。在制膜技术中,膜料也可按成分、结构、性能、用途和制备方法分类。按成分,现有的薄膜有元素金属膜、合金薄膜、元素半导体薄膜、化合物半导体薄膜、氧化物薄膜、氮化物薄膜、高分子薄膜、混合物薄膜等。按组织结构则分为单晶薄膜、多晶薄膜和非晶薄膜。在实用上广泛采用按用途分类,如电子薄膜、光学薄膜、机械薄膜、装璜薄膜等。电子薄膜中又分为超导电薄膜、导电薄膜、电阻薄膜、半导电薄膜、介质薄膜、绝缘薄膜、保护薄膜、铁电薄膜、磁性薄膜等。其他还有性能特殊的压电薄膜、热电薄膜、光电薄膜、电光薄膜、磁电薄膜、磁光薄膜等。有不少薄膜具有两种或多种优良性能,它们可以有几种用途。展望微电子工程,从单晶硅片到晶体三极、二极管及传感器等,都需要建立高级的严密的制膜技术。要想在1/1000毫米到3/100毫米厚的单晶硅层上掺入磷或锑以变成一个半导体层,必须经过一系列制膜技术制成器件,需要按不同要求镀上膜,并在上面划出几百甚至是上千个彼此孤立的分区,这些分区都有截然不同的特性和功能,每个区域就是不同的器件,它们都承担一种结构元件的功能。可见,薄膜技术十分重要,而技术要求又是十分苛刻的。制膜技术有两大类,那就是用物理方法和化学方法。要制出膜质优良、性能稳定的功能薄膜,常用物理方法加工,用这种方法制膜都要在真空抽机(机械泵和油扩散泵)抽成的高真空容器中进行。目前,用化学方法制膜在膜质上还达不到要求,所以多采用物理方法,首先将要制造功能薄膜的原料(块状或片状)进行加热蒸发,形成原子蒸气,然后让它在要使用的衬底上冷凝、沉淀(衬底可用晶片、玻璃、金属片)。要使功能膜成膜均匀,具有一定的机械强度,必须精确控制真空容器中的气氛和成膜时给衬底加热的温度。改变气氛和温度,可以制备出各种不同类型、不同质量、具有特殊功能的薄膜。根据成膜的原理和蒸发源不同,按其特点可分为:电阻加热、电子束加热、激光束加热、高频电流加热、高压直流(磁控)溅射、13.56兆赫频率源的射频溅射、离子束溅射等。目前,经过改进已使用于制备半导体制膜的最完备的设备称为分子束外延设备。制膜技术非常奇妙而丰富地制造出许多功能膜。1975年,斯皮尔等人用硅烷直流辉光放电分解沉积制成非晶态硅薄膜。自它问世以来,这种薄膜已作为一种新能源材料,开辟了广阔的前景。以往太阳能电池主要用硅、铁化镉(CdFe)和砷化镓(GaAs)的晶体,生产晶体的工序比较复杂,材料损耗很多,价格昂贵。用非晶硅薄膜作成太阳电池吸收太阳能量比晶体硅多10倍,而电池工作区最佳厚度为0.5~0.7μm(微米),(1/1000毫米),为单晶硅电池厚度的1/500,而且在各种各样的衬底上容易成膜,如玻璃、不锈钢、陶瓷、塑料薄膜等。它们的面积可以大于30×30cm2(平方厘米),而且有利于发展成为多种材料的迭层式太阳能电池,大大地提高太阳能的转换效率。非晶硅薄膜还用于集成电路,制作成极灵敏的传感器元件,组成控制和检测的仪器。如用非晶态硅一氢合金膜制成的光电图像传感器,可获得非常清晰的图像。非晶态硒薄膜,是静电复印材料,具有可作成大面积、膜质优良、长期使用不发生结构变化、抗震、耐磨等优点,已获得广泛应用。运用制膜技术,可以制备出许多具有独特的电学、光学、热学、声学等性能的铁电薄膜,可望它与半导体硅和砷化镓组合在光电子学、集成光学、微电子学等高技术领域中有广泛的应用,因而引起了国际科技界、产业界、军事界以及政府部门的极大关注。因为铁电薄膜可制成随机存取存贮器,具有永久存贮的能力,断电时也能保持存贮信息,其读写周期短,抗辐射损伤能力强,存贮器体积小,适合于计算机对高速度、高密度和永久存贮的要求。美国卡利沙力公司和日本NEC公司已先后推出了16K和64K的FRAM器件。科学家们预测1995年FRAM将在国际存贮器市场中占48%。早在公元前,人们已发现了金刚石。本世纪80年代在制膜技术获得重大突破之后,金刚石制膜技术获得了完满的成功。早在1704年,牛顿首先提出了金刚石是碳的一种结构形态的假设,1797年,这个假想获得了实验上的证实。后来,用天然的或高压合成的金刚石颗粒制成了整流二极管、光探测器、发光管。1982年,在天然的金刚石上成功制作成双极型晶体管、横辐射探测器,用于温度2~1000K的范围内对电阻变化反应非常灵敏的热敏传感器。这样,科技界、产业界对于金刚石薄膜作为半导体材料应用于电子器件上寄托了极大的希望,金刚石薄膜可能会成为新一代的半导体材料。制膜技术,还可以做成像彩虹那样,使每层薄膜之间没有明显分界面的功能膜,这种材料叫梯度材料。它们各层之间,成份组成和性能(弹性、导热性、热胀性等)也是渐渐变化的。1989年,这种梯度材料已经走出了实验室,投入了应用,已取得明显效益。飞机上采用梯度功能材料是应用的一个重要方面。另外,用于医学,如假牙的制作,它可以改变假牙的结构,可作成一截坚硬、耐磨、耐腐蚀,而另一截则与牙床结合成非常吻合的结构。这样,用梯度材料做成的假牙质量优良,且使用舒适,非常令人满意。制膜技术还可以制备两种不同材料薄层(几个纳米至几十纳米厚)交替生长出多层结构,这就是通常所谓的超晶格(在半导体上又称量子阱)。其最典型的超晶格结构是砷化镓/砷化铝镓这种结构可以作为性质优良的半导体器件。近年来,人们还制备出非晶态半导体的超晶格结构。金属超晶格和磁性元素/非磁性元素超晶体,以及稀土金属超晶格等。人们可以利用超晶格的电性、磁性制出各种具有特性的功能器件。如钯/钴超晶格,可以成为磁光可擦写存贮或磁泡存贮器件。在制膜技术中,新功能膜在高科技园地犹如百花争艳,正在不断展示出它们的丰姿。定向生长的晶体晶体结晶的过程,是从高温熔融的原液冷凝成固体的过程。这种过程导致固体材料内部的成分分布是不均匀的。例如金属大多数是多晶状态,在一个个有规律排列的晶粒的边界上,在结晶过程中,杂质就会挤入晶粒之间,而且产生杂质富集,这些杂质在低温时,会使晶体畸弯,有时对金属整体有一定的强化作用。但在高温下,晶界部分首先熔化。在外力作用下,这种杂质晶界首先使晶粒间相对运动,晶界上的杂质就成为一种运动的润滑剂。这样,人们就很容易想到,要提高金属的强度,就要消除晶粒间的晶界,生长成单晶体,实现这种设想的技术称为晶体的定向生长。控制晶体定向生长,是一种极其复杂的很难掌握的技术。70年代,工程技术人员想通过铸型的水冷底板来控制高温金属融熔体的冷却速度,期望能制成一种特殊的飞机叶片。这种叶片上的晶粒要沿着主要受力的方向排列(工程上称为沿主应力方向排列),这种飞机叶片,在最容易破裂的方向上消除了晶界,形成了条状的晶柱,人们称为柱晶合金。和原来的合金相比,柱晶合金的高温强度及热疲劳强度都有显著提高。这种加工方法后来发展成生产单晶合金工艺。在柱晶生长晶路上增设一条弯的通道,只让一条晶柱通过,并经过严密控制冷却条件,就可制备一个具有完整晶粒的构件。在这种构件上,横向、纵向均无任何界面,或者说接近于没有缺陷。定向单晶合金比普通多晶合金的工作温度可提高80℃~100℃。在同样高的工作温度下,单晶合金做成的构件的工作寿命比普通多晶合金的构件要长7倍以上。单晶合金已开发了近百种,成为各种工程构件。美国的波音系列客机、欧洲的空中公共汽车系列客机、美国的战斗机、预警机和轰炸机都使用了单晶合金。美国航天飞机的主发动机,由于选用单晶合金而赢得“安全”之美名。我国的单晶合金生产工艺已在国内开花结果,进入了高技术的各个领域。太空生长晶体“敢上九天揽月,敢下五洋捉鳖”,这过去是一种神话,人类用这句话来表达改造自然的决心。然而这类神话却吸引了一批科学的探索者,为实现这种神话而献身。他们企盼着能在失重和高洁净的太空随心所欲地产生各种性能优良的材料,特别是单晶材料。科学家们在1983年12月发射的宇宙飞船空间实验室1号中,进行了制备单晶的实验,把在地球上生长单晶体的设备和方法,搬上太空实验室并制造出半导体硅和半导体锑化镓晶体,从而在人类的科学技术发展史上,写下了太空生长晶体的光辉一页。在太空实验室里生长晶体,仍旧是采用地球上的硅单晶“区熔法”的生长设备。其具体作法是:在一个密封炉体内,使用两个作为加热源的卤光灯,聚焦于双椭圆炉体的共焦点上,形成一个熔区,熔区因加热炉移动而移动。单晶硅的生长是用一定形状的多晶硅棒作原料,在氩气氛保护下通过掺硼工序逐步完成的。宇航员通过程序控制装置自动调节卤光灯的功率。生长硅单晶时,卤光灯功率是200~800瓦特,晶体在生长过程中以8转/分的速度旋转。随着炉体的移动,晶体以5毫米/分的速度慢慢生长,这次实验的生长时间定为21分钟。单晶硅和锑化镓,在太空生长,记录了世界材料制备步入太空的光辉一页,是人类步入太空进行科学实验的重要记载。而且,其数据完整,步骤清楚。当进行结果分析时,人们惊奇地发现,太空生长晶体所呈现出的“生长条纹”与地球上生长晶体的条纹有明显的不同。科学家们从这些科学记录中提出了一系列的新概念和新理论。太空生长晶体的成功,给人类在宇宙生产设备的研制和生产产品的设计方面提供了可能和重要依据,人类开发宇宙和移民太空已不是遥远的事情了。21世纪的突破全球经济腾飞的洪流,势不可挡,汹涌澎湃,冲击着科学、技术、产业、文化的经络,展示出未来21世纪的宏伟蓝图。材料仍然是21世纪经济发展的柱石,科学家们已经预言:非晶态如繁星密布;高温超导将掀起第四次技术革命;纳米将是21世纪的材料新单元;高分子将功盖全球。这一切将汇成21世纪的最强音,人类的文明将进入新纪元。繁星闪烁非晶态材料是材料科学中一个广阔而又崭新的领域。自然界中的各种物质,按组成物质的原子模型,分为两大类:一类为“有序结构”的晶态物质,它的原子占据着布拉菲点阵上的顶点,而每个晶胞则呈有规律的周期性排列。另一类是气体、液体和某些固体(非晶固体)则称为“无序结构”。气体相当于物质的稀释态,液体和非晶态固体相当于物质的凝聚态。液体分子就像口袋里装着的小弹子,一个紧挨一个地密集堆叠在一起。气态或液态也可获得非晶态的固体。非晶态固体的分子好像液体一样,以同样的紧密程度,一个紧挨着一个无序堆积(杂乱无章地堆积)。所不同的是在液体中,分子很容易流动。而在稠密的糊状物中,分子滑动则变得很困难。非晶固体中的分子则不能滑动,具有固有的形状和很大的刚硬性,被称为“凝结的液体”。“非晶态”的概念在人们的头脑里是相对于“晶态”而言的。金属和很多固体,它们的结构状态是按一定的几何图形、有规则地周期排列而成,就是我们曾定义的“有序结构”。而在非晶态材料的结构中,它只有在一定的大小范围内,原子才形成一定的几何图形排列,近邻的原子间距、键长才具有一定的规律性。例如非晶合金,在15~20范围内,它们的原子排列成四面体的结构,每个原子就占据了四面体的棱柱的交点上。但是,在大于20的范围内,原子成为各种无规则的堆积,不能形成有规则的几何图形排列。因此,这类材料具有独特的物理、化学性能,有些非晶合金的某些性能要比晶态更为优异。在人类发展史上,非晶态物质如树脂、矿物胶脂等,早在几千年前的远古时代,已被人类的祖先所利用。在我国,玻璃制造至少已有2000年的历史。近半个世纪以来,人们几乎全部致力于理想的晶态物质及其超高纯度高均匀方面的研究,而忽略了非晶态物质的开发。20世纪30年代,克拉默尔用气相沉积法获得了第一个非晶态合金。50年代中期,科洛密兹等人,首先发现了非晶态半导体具有特殊的电子特性。1958年,安德森提出:“组成材料的几何图形(晶格)混乱无规则地堆积到一定程度,固体中的电子扩散运动几乎停止,导致非晶态材料具有特殊的电、磁、光、热的特性。”这就引起了科学家们的极大兴趣。但是,当时如何制造能够应用的非晶态材料的方法尚未解决,金属、合金的生产仍沿用传统的炼金术。1960年,美国加州理工学院杜威兹教授领导的研究小组发明了用急冷技术制作出进行工业生产的非晶合金的办法。采用这种方法,可以制备出各种宽度的非晶合金条带,条带的带宽已达150毫米以上。另外,这种方法还可制备非晶态的粉末,其粉末粒度直径可达1μm(微米,1‰毫米)左右。这种方法也可制备非晶合金丝。此方法在冶金工业生产工序上节省了多道工序,节省能源消耗,被称为冶金工艺的一次革命,也就是“炼金术”的革命。非晶固体的研究结果已发现的非晶态材料包括:非晶态金属及其合金、非晶态半导体、非晶态超导体、非晶态电介质、非晶态离子导体、非晶态高分子及传统的氧化物玻璃等。可见非晶态材料是一个包罗万象,极为富有的材料家族,它已广泛应用于航天、航空、电机、电子工业、化工以及高科技各领域并取得了显著效果,而且,还继续显示着它的不竭功能。非晶态金属比一般金属具有极高的强度,如非晶态合金Fe80B20,其断裂强度达370kg/mm2,是一般优质结构钢的7倍,弯曲形变可达50%以上。可见,它在保持高强度的同时还具有较高的韧性。这种非晶态合金还具有优异的抗辐射特性,经中子、γ射线辐照而不损坏,在火箭、宇航、核反应堆、受控核反应等方面都具有特殊的应用。非晶态材料可以制备成复合材料和层状材料。在产品生产工序上,金属玻璃的制备可以连续生产,一次成型,生产程序简单、成本低廉。自1974年起,美国、日本、西德、法国已大量投资,提供了不少的市场产品。非晶态合金在工业上首先使用于变压器,非晶合金片薄,一般为20~30μm(微米,1‰毫米)制成这种微型优质变压器适用于航天、航空、航海的供电网络上。由它制成的其他配电变压器、脉冲变压器都已投入使用。常用的变压器铁心均是用硅钢片制造,而且条经过冲压、剪切、绝缘等6~8道工序。采用非晶态合金片,减少了这一连串工序,而且所制成的变压器能量损耗低,只有硅钢片变压器的40%。同时,这种非晶态合金片的强度比硅钢片的高,耐腐蚀性好,还具有极优的电学性能。不久,用非晶态合金片做成的电动机诞生了。1980年,美国GE公司用非晶态合金片做成了电动机,其体积小,能量损耗低,其耗能只有用硅钢片制成的电动机的1/3。目前,全世界已有6~7万台非晶态合金制成的配电变压器投入运行。如果在我国,将硅钢片制造的配电变压器全部换成非晶态合金片的变压器,那么每年可节电100亿度,约合价值人民币10亿元以上。世界上属于非晶合金的生产类型很多,美国有58个,日本73个,我国28个,并且已有年产百万吨铁心的非晶合金厂。非晶合金种类极多,有以铁为主的叫铁基非晶态合金,还有钴基、铁—镍基、铁—钴基、铜基、镍基等。非晶合金还包括永久磁性或在电场下具有磁性的磁性材料,前者称硬磁材料,后者称软磁材料。非晶态磁头,是非晶态合金应用的另一个领域。一种钴——铁——镍——铌——硅——硼体系的非晶态合金耐磨性高、噪声小、硬度高(比常用磁头的硬度高2~3倍),是很好的磁记录材料。早在1988年,我国已生产80吨非晶态软磁合金,用于电子工业的各种电器。非晶态钯——硅合金,可作成电磁、超声信号延迟线,作为信号延迟一段时间的器件,并用于军工、雷达电子计算机、彩色电视、通迅系统或测量仪器。电磁延迟线可由几毫微秒延长达几十微秒,超声延迟线则由几微秒延迟到几千微秒,均可直接使用,免除了一大套延迟讯号的线路和仪器设备。用非晶态合金制作成性能稳定、精确可靠的应变仪和各种传感器都已投入使用,已形成替代原有设备、器件之趋势。非晶态还有一些独特功能,如低热膨胀系数、在磁场作用下变形接近于零等,根据这些特性,人们已经制造出各种要求不随温度、磁场而变化的精密仪器,如标准量具、精密天平、高精度钟表、104~105立方米的液化天然气的大型运输罐等。常用的磁录像机、电视和电子显微镜也都需要大量的非晶态合金,如铁——硼系,铁——磷系(铁、镍、钴)——锆系等非晶态合金。有的非晶态合金具有恒弹性特性,在受到不同压力作用下,其产生的形变大小,不随温度变化而变化,是制作精密计量仪器的重要材料。非晶态合金具有超高强度、高硬度、耐腐蚀的性质,是一种非常理想的刀具和轴承材料。非晶硅太阳能电池,在国际能源危机的情况下,闪耀着夺目的光辉。由于太阳能是取之不尽、用之不竭和没有污染的能源,所以非晶硅的研究热潮席卷全球。美国在1986年以前十年中已在这方面投入15亿美元。著名的物理学家英特在第八届国际非晶态会议的闭幕式上说:“我不能预见未来,不能说明究竟在什么时候,太阳能电池将要取代石油!”各种富有特性的非晶态材料已占领了科学、技术、产业的各个领域,它们已成为重要的新型固体材料的大家族。虽然,非晶态科学从理论到实践,还有许多问题尚未清楚,但是,有关非晶态材料的许多特性已被人们慢慢认识并付诸应用,在非晶态材料这个广阔的领域内,人们将会开拓出许多新课题、新性能、新材料和新前景。当代冶金工业的“炼金术”的革命,在21世纪将继续产生重大的影响。全球高温超导热的延伸与第四次技术革命人类的发展史上曾经兴起过三次技术革命的风暴,它们已经被光荣地载入史册。首次技术革命始于18世纪60年代,是以蒸汽机的广泛应用为标志,推动了社会工业化的大革命。第二次技术革命发生在19世纪7O年代,是以电力的广泛应用和无线电通讯的发明为标志,把全球推进到了生产自动化的文明社会。第三次技术革命的掀起是在20世纪50年代以后,科学家们进行了一些重要的实验,以发现了原子结构、电子、原子核分裂产生原子能、电子计算机、激光的广泛应用为标志,把人类社会推向了高度智能化的高度文明年代。随着高温超导体的发现,科学家们凭着高度灵敏的科学灵感,第四次技术革命即将到来!这是多么令人振奋的消息!在人类发展的历史长河中又要增添闪光的新星。回想超导材料发展的艰难岁月,科学研究者作出了多少艰辛的努力!1911年的一天,荷兰雷登大学的卡未林,翁纳斯(K.Onnes)突然向世界宣布,他发现了超导现象!!!这个消息震撼了世界,人们以十分兴奋而赞赏的目光注视着他的研究工作。1908年前,翁纳斯成功地将气体氦进行液化,使液体氦的温度接近绝对温标的绝对零度(零下273摄氏度)。这样,当翁纳斯的助手在接近绝对零度的温区研究金属汞的电阻和温度的关系时,发现在绝对温度4.2K附近,汞的电阻突然由0.125欧姆降到零。他的助手向翁纳斯报告了这种奇怪的令人难以置信的现象。翁纳斯开始并未介意,认为这可能是实验上的失误。但他还是以非常认真的态度,闭门谢客,把自己关进了实验室,经过一天一夜的观测,次日清晨,他向全世界宣布了他的实验结果。这个结果,具有无穷的凝聚力,吸引着许多富有探索精神的科学家,在世界科技界,掀起了超导研究的热浪。有人努力寻求电阻为零的新超导材料;有人探索超导材料的微观结构和微观机理;有人研究超导材料的电磁特性并且开拓它的应用领域。科学家们经历了75年的艰难岁月,尝遍了甜酸苦辣,已查明在元素周期表里的大部分元素本身都具有超导特性或在高压力作用下呈超导现象。科学家们已肯定了其中只有33种元素本身没有超导性。但是,那些元素的超导转变温度极低,只有零点几度(绝对温度K)至几度(绝对温度K)。随即,由巴丁(J.Bardeen)、库柏(L.N.Cooper)和施瑞弗(J.R.Sechrieffer)共同创立了解释超导转变的微观理论。这就是著名的B.C.S理论,这个理论在1957年问世,他们因此而荣获诺贝尔物理奖。在研究超导体的电磁特性方面,1933年迈斯纳(W.Meissner)和奥克森菲尔德(R.Ochsenfeld)的磁测量表明,超导体的磁性完全与导体不同,他们将超导金属锡(Tc=3.72K)和铅(Tc=7.19K)样品放在,这磁通完全被除在样品外,样品表面的磁通线密度增加。纠正了统治超导界22年,认为超导体和导体的磁性能完全一致的观点。这个效应被称为迈斯纳效应,是现代悬浮超导列车能够飞速运行的理论基础。60年代后期,日本就开始执行超导磁悬浮列车计划,利用超导磁力使车厢在轨道上悬浮起来,并推动车厢高速前进。1972年第一台MC—100型实验车实验成功,车长400米,浮起10厘米,但时速每小时只有60千米;1978年时速达每小时347千米;1987年载入列车的时速已达每小时400千米。日本目前已计划建设从东京到大阪的时速为每小时500千米的磁悬浮铁路。超导悬浮列车在西欧也处在实验阶段,各方面技术在实验过程中都得到不断的提高。人们期望这种列车不久将会运行在铁路上。此外,用超导材料制造的电动机、发电机、变压器、热开关、辐射检验器以及无接触转换开关、国防军工仪器等已经投入使用。超导现象刺激着科学家们的求知欲,他们的理想像火山爆发一样沸腾了整个科学界。但是由于超导转变温度太低,超导的设备、仪器、元件还需要在液氦温区(4.2K)内工作,人们不得不以巨额投资设计和建造庞大的液氦站,建立繁杂的辅助设备,把气态的氦转变成液体氦,然后通过辅助设备送到使用的装置上去。所以当超导材料的超导转变温度还是在23.3K的时候,科学家们的美梦,只好冻结在漂渺的脑海之中。然而,要提高超导材料的超导转变温度,并不是一件轻而易举的事。经过75年的漫长岁月,超导材料的超导转变温度从4.2K到23.2K,仅提高了19K,这种缓慢的进展速度,多么令人困扰!1986年秋,中国科学院物理研究所的赵忠贤、陈立泉等人在镧钡铜氧和镧锶铜氧的氧化物体系中观察到了在46.3K和48.6K下的超导转变,同时物理研究所李林教授领导的研究小组,用溅射方法制备出超导转变温度为25~27K的镧锶钡氧超导薄膜。中国的科学家,在高科技的国际竞争中已进入角色。1993年,美国得克萨斯超导研究中心的美籍华人朱经武宣布,他制备出氧化汞、钡钙铜的超导体超导转变温度为153K(零下120℃),这是目前的最高纪录。全球超导热的浪潮,实际上是一场综合国力和科学水平的竞争,形成了美、中、日三国三足鼎立的格局。谁都不甘落后,新的研究,新的成果不断涌现,尤其是在1987~1988年间,几乎是每三天都有高温超导研究的新突破。还有一些科学家,如日本的科学家声称曾发现锶钡钇铜氧超导体系有60℃的超导转变,一些科技刊物多次报导发现室温超导的现象,美国休斯顿大学的科学家也声称在铒钡铜氧体系中发现有230K(零下43℃)的超导转变现象,遗憾的是,这些结果无法重复成功。超导研究的每个突破都牵动着无数人的心,震撼着科技界、产业界,各国政府都为超导研究鸣锣开道,美国原总统布什曾公开宣布他要亲自过问超导研究,可见其重视程度。超导热持续升温,而且持续的时间在科学史上是最长的,涉及的人数也是最多的,这是什么原因呢?正如高温超导体一出现,世界的科学家们就断言:第四次工业革命即将到来。因为高温超导体实现了在强电方面的应用,全球的电力输送,从发电到供配电模式都将全部改变,若能做到无损耗地输电,仅美国一个国家一年即可节省100亿美元。采用超导材料建设超导电子对撞机的电子贮存环,有可能使达到40万亿电子伏特的粒子发生对撞,对揭示神奇的微观世界和物质结构元将有重大的贡献。超导在弱电应用方面,如电子通讯、信息技术、精密仪表、核物理、医学、军工、宇航的应用均有着广阔的前景。高温超导的超导量子干涉仪已经诞生,为在上述领域中制备有关仪器打下了基础。日本东海铁道和铁路新技术研究所声称时速每小时为550千米的悬浮列车已经研制成功,并计划于1996年完成全部试验,投入使用。超导材料的成功应用,对电力工程、磁流体发电、超导电子学、地球物理、国防科学、生物磁学、医学等十几个学科都带来重大影响,高温超导材料在21世纪无疑会大放异彩。纳米材料定乾坤1959年,诺贝尔奖获得者,美国物理学家查德·费因曼(RichardPbillipsFeynman)曾经提出:“如果有一天可以按人的意志安排一个个原子,将会产生怎么样的奇迹?”这并不是一位科学家的异想天开,随着纳米材料科学的出现、发展与完善,它很快变成了现实。纳米科学将对人类社会生产力的发展产生深远的影响,有可能从根本上解决人类面临的重大问题,如粮食、健康、能源和环境保护等。纳米材料是指材料的尺寸处于1~100nm(纳米:即10~100)范围内的金属、金属化合物、无机物或高分子的颗粒。这些纳米级的颗粒显示出许多奇异的性能,这些性能既不同于通常的大块材料,也不同于单个原子状态的特性。纳米科学领域,包括纳米技术和纳米颗粒的制备方法,观测它们的奇异特性,各种纳米颗粒合成的纳米固体以及固体内的成份分布及纳米固体的新特性与有关的应用。从19世纪60年代开始,纳米材料的发现是在胶体溶液中,它们是直径为1~100nm的粒子。科学家指出,直径小于1nm的颗粒是由100个原子构成,称为原子簇团。固体的纳米材料首先是由德国萨利仑特斯大学的H.格利特(H.Gleit-er)教授所领导的研究组在1984年制成,他们是用6nm(纳米)铁粉压成纳米固体。1986年,H.格利特宣称,纳米固体是一种具有奇异结构类型的固体,而且指出,在纳米颗粒的直径为2~10nm的颗粒中,其原子数目一般为100~1000个,其中有50%的体积为按不同方向排列的界面原子。这样组合而成的材料,表现出这种材料既不同于晶态,也不同于非晶态。在纳米粉末方面,性质上显现出一连串奇异的物理特性,如金属的纳米粒子并不反光而且吸收光,一般金属粉末在不同程度上都具有反射光的性质,而呈现白色或灰色。而纳米金属粒子都很黑,不反光,说明具有很强的吸光特性。另外,纳米金属粒子的熔点明显的比金属粉末低,如10纳米的铁粉,熔点降低33℃,即从1526.5℃降为1493.5℃。纳米金粉降低27℃,即从1063℃至1036℃。其粒度越细,熔点下降越显著。在光学、电学、磁学、热学等方面均与同类的块体材料不同。而且对于同一物质,即便有同样粒度,也会由于制备方法、所处的环境和测量方法的不同而得到不同的特性。1982年,G.宾宁格(G.Binnlg)和H.罗尔(H.Rohrer)发明了扫描隧道显微镜(STM)。这种显微分析技术可以直接观察到原子,为开展纳米材料的研究创造了有利条件。到80年代末,扫描隧道显微镜不仅是一种观测的工具,而且,还可用来排布原子。为此,G.宾宁格和H.罗尔在1986年获得诺贝尔奖。这种扫描隧道显微镜的价格仅为电子显微镜的l/10,但其放大倍数要比电子显微镜大10倍以上。我国的科学家已经成功地制造了这类仪器,而且它已进入了国内某些实验室。1989年,美国斯坦福大学的阿尔希勒奇在晶态石墨表面搬走了原子因,写下了“Stanforduniversty”的字样。1990年,美国IBM公司的埃格勒博士在零下296C的Ni表面用35个氢原子排出了“IBM”的字样。1991年,日本电光学有限公司在硅表面上搬走原子写下了“CEOL”(公司的缩写)。1993年12月,中科院北京真空物理实验室的宠世谨教授在硅表面搬走了原子,写下了“中国”的字样。短短几年中,美、日、中三国已掌握了搬动原子的纳米技术,所写下的字母大小是一个标点符号的1/500000,表明人类按需要排布一个个原子的技术已成为可能。查德·费因曼的梦想变成现实已不是遥远的事情了,人类打开多姿多彩的原子、分子世界的时代即将到来。随着纳米技术的发展,为开发原子级存贮技术,打下了有利的基础。如果将某种存贮材料的原子一个个地按预想的方式进行排列,几个原子一组作为一个存贮单元,根据设计的功能,进行合理布局,这样就可以使单位面积(或单位体积)的存贮材料的容量提高几个数量级。这样,飞跃发展的计算机技术就会如虎添翼,超高速的计算机将遍地开花。纳米技术促进着纳米材料的发展,当纳米材料实现原子级的布局的时候,人类就会进人一个崭新的天地。目前,在现有的科学水平上,纳米材料的制备基本上分成两个阶段。首先是纳米颗粒的制备,接着是保持这些纳米颗粒在没有受到污染(包括表面氧化)的条件下用SGPa(G为千兆帕,即10‘帕)的高压将纳米颗粒压缩成纳米固体。为了使纳米颗粒不受污染,纳米颗粒的制备和纳米固体的压制都应在超高真空(10-7帕)容器中进行。生产纳米颗粒的方法很多,有机械研磨法、物理方法和化学方法。用物理方法制取纳米粉末的设备和非晶态薄膜制备的方法原理相似,都可采用电子束、激光束、高频加热、电阻加热等离子溅射,电子回旋共振等离子溅射等方法,这些方法首先将待加工的材料激发成原子蒸汽再使它们沉淀下来,然后收集粉末,进行压制。这类制备方法能获得较纯净的纳米材料,而且易于控制,但还无法解决大量生产的问题。化学方法制备的纳米颗粒,粒度比较大,且不均匀,连续压制成纳米材料比较困难。工业上已能制备的金属纳米颗粒有:钠、钾、钙、铜、钼、镥、钌、银、钽、钨、锇、铼、铱、金、铊、铂、钯等,还有部分金属氧化物。纳米材料的应用将以丰富多彩的特色在材料科学史上描绘出奇妙的一页,如纳米镍粉或铜锌纳米粉末对某些化合物反应是极好的催化剂,可代替昂贵的铂金或钯催化剂。铁的纳米颗粒外面覆盖着一层5~20nm(纳米)的聚合物,可以固定大量蛋白质或酶,以控制生物反应,在生物技术和酶工程领域中大有用处。高分子的纳米材料在润滑剂、高级涂料、人工肾脏、各种传感器及功能电极材料方面均有重要应用。纳米材料的磁性功能也是非常突出的,纳米级的磁记录材料能获得很高密度的磁记录特性。纳米材料不仅包括粉状,而且还有纳米级的薄膜和纳米纤维。纳米薄膜又称超薄膜材料,制成10nm磁膜或磁带材料,其磁性能得到显著的改善,如铁——硼——硅非晶磁膜的磁导率比一般同类成分的磁性材料分别提高10倍。纳米机器人(nanorobot)正在科学家们精心的设计之中,第一代的纳米机器人是生物系统(如酶)和机械系统有机结合的产物,即使用多功能的微型机器人(称为易于在人体血管流动的药物),注入人体血管内,作为全身健康检查,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至还能消灭病毒,杀死癌细胞。第二代纳米机器人是直接从原子、分子装配成有一定功能的纳米尺寸的装配装置,它具有自我调节能力和转换程序,例如可以生产人体所需的蛋白质。第三代纳米机器人将是含有纳米电子计算机的,可以实现人机对话的并有自身复制能力的纳米装置。那时,人类的劳动方式将彻底改变,劳动的主体——人将得到完全解放!纳米材料一出现,有的科学家就预言,纳米材料将是21世纪材料构成的基本单元,这就意味着,由纳米材料构成的许多新材料将会显示出许多前所未有的奇异特性。于是,美国最早成立了纳米研究中心。早在1985年,日本就建立了全国性的研究体制。英国政府在财政困难下,1992年投入1280万英镑支持纳米技术的发展。我国已在1990~1992年先后召开了两次全国性的纳米学术盛会,并把纳米技术纳入“863”计划。人类进化史表明一个真理,“一个充满挑战的时代也往往是一个充满机遇的时代”,机遇总是降临到敢于驾驭局势的人们。历史最终属于创造它的“上帝”。高分子王国在世界范围内,高分子材料的制品属于最年轻的材料。它不仅遍及各个工业领域,而且已进入所有的家庭,其产量已有超过金属材料的趋势,将是21世纪最活跃的材料支柱。高分子材料是有机化合物,有机化合物是碳元素的化合物。除碳原子外,其他元素主要是氢、氧、氮等。碳原子与碳原子之间,碳原子与其他元素的原子之间,能形成稳定的结构。碳原子是四价,每个一价的价键可以和一个氢原子键连接,所以可形成为数众多的、具有不同结构的有机化合物。有机化合物的总数已接近千万种,远远超过其他元素的化合物的总和,而且新的有机化合物还不断地被合成出来。这样,由于不同的特殊结构的形成,使有机化合物具有很独特的功能。高分子中可以把某些有机物结构(又称为功能团)替换,以改变高分子的特性。高分子具有巨大的分子量,达到至少1万以上,或几百万至千万以上,所以,人们将其称为高分子、大分子或高聚物。高分子材料包括三大合成材料,即塑料、合成纤维和合成橡胶(未加工之前称为树脂)。面向21世纪的高科技迅猛发展,带动了社会经济和其他产业的飞跃,高分子已明确地承担起历史的重任,向高性能化、多功能化、生物化三个方向发展。21世纪的材料将是一个光辉灿烂的高分子王国。现有的高分子材料已具有很高的强度和韧性,足以和金属材料相媲美,我们日用的家用器械、家具、洗衣机、冰箱、电视机、交通工具、住宅等,大部分的金属构造已被高分子材料所代替。工业、农业、交通以及高科技的发展,要求高分子材料具有更高的强度、硬度、韧性、耐温、耐磨、耐油、耐折等特性,这些都是高分子材料要解决的重大问题。从理论上推算,高分子材料的强度还有很大的潜力。在提高高分子的性能方面,最重要的还是制成复合材料第一代复合材料是玻璃钢,是以玻璃纤维和合成树脂为粘合剂制成。它具有重量轻、强度高、耐高温、耐腐蚀、导热系数低、易于加工等优良性能,用于火箭、导弹、船只和汽车躯体及电视天线之中。其后,人们把玻璃纤维换成碳纤维,其重量更轻,强度比钢要高3~5倍,这就是第二代的复合材料。如果改用芳纶纤维,其强度更高,为钢丝的5倍。高性能的高分子材料的开拓和创新尚有极大的潜力。科学家预测,21世纪初,每年必须比目前多生产1500~2000万吨纤维材料才能满足需要,所以必须生产大量的合成纤维材料,而且要具有更轻型、耐火、阻燃、防臭、吸水、杀菌等特性。有许多新型纤维,如轻型空腔纤维、泡沫纤维、各种截面形状的纤维、多组份纤维材料等纷纷被研制出来,人们可指望会有耐静电、耐脏、耐油,甚至不会沾灰的纤维材料问世。这些纤维材料将用于宇航天线、宇航反射器、心脏瓣膜和人体大动脉。高分子功能材料,在高分子王国里是一片百花争艳的盛景。由于高分子的功能团能够替代,所以只要采用极为简便的方法,就可以制造各种各样的高分子功能材料。常用的吸水性材料,如棉花、海绵,其吸水能力只有本身重量的20倍,在挤压时,已吸收的大部分水将被挤出来。而用淀粉和丙烯腈制成的高分子吸水材料,它不仅能吸收自身重量数百倍到上千倍的水,而且受到挤压也不会挤出水来。人们可以期望,将高吸水性的高分子材料制成能将化学能转变成机械能的装置,以及具有类似于肌肉的功能或制造测量仪器。在微电子工业的光刻集成块工艺,常用的光刻胶(又称光致抗蚀材料),就是能使高分子相连接一种功能团,光照射时会起化学反应,使其溶解度降低或提高。应用这种光刻胶制备集成块,可以使集成块的线宽达到0.1到0.01微米(1‰毫米),只有用其他工艺制成的集成块的线宽的1/10到1/100,是适合于21世纪的电子计算机的主要元件——微细元件的开关。光刻胶并能用于各种精细加工,如半导体元件,EP刷线路板,金属板膜或表面的精细加工、玻璃、陶瓷的精细刻蚀、精密机械零件加工等。高分子功能材料应用在信息工程方面,已经生产了光电导摄影材料、光信息记录材料、光——能转换材料,并都已进入实用阶段。像“当代摩西神树”的离子交换树脂的高分子功能材料也发展很快,许多高分子离子交换膜、高分子反渗透膜、高分子气体分离膜、高分子透过蒸气膜等都在化学工艺的筛分、沉淀、过滤、蒸馏、结晶、萃取、吸附等过程中获得应用,而且分离结果优于其他方法,可节约大量能量。日本的制盐工业早已用离子交换膜去代替盐田和电解食盐工艺。利用反渗透膜对有机化工、酿造工业的三废进行处理,可回收胺、酯、醇、醚、酮、酚等重要有机化合物。气体分离膜对不同气体的透过率和选择性不同,可以利用这一性质从混合气体中选择分离某种气体,如从空气中富集氧,从合成氨中回收氢,从天然气中收集氦,还可以制备一种水下呼吸器(人工鳃),它是直接从海水中提取氧的潜水装置,人类可望能长期生活在海水中,进入海龙王的宫殿,分享海龙王海底宁静的幸福生活的梦想可变成现实。还有各种信息转换膜、反应控制膜、能量输送膜等正在研制阶段。一种富有吸引力的生物膜也正在研究之中。生物膜具有奇特的性能,不仅能主动起能量、信息、物质的传递作用,还能参加光合作用及有机物质的生命合成等生命活动。这就是21世纪的高科技的一颗明珠,摘取这颗明珠需要有极大的勇气和百折不挠的精神。高分子功能材料的另一极为重要的发展就是用于催促化学反应,这类高分子功能材料被称为高分子催化剂。早在本世纪40年代,人们已经使用一种叫交联磺化聚苯乙烯的离子交换树脂作催化剂,用于化学反应的各个过程,如水解、缩合、聚合等。尔后,这类高分子功能材料发展很快,高分子金属络合物催化剂接着问世,它能够在化学反应中加速捕捉金属离子,实现金属化合物的迅速分离,在工业生产和工业分析上是一种十分重要的方法。还有高分子金属催化剂,是促进化合物中金属离子迅速完成化学反应的材料,它已获得了成功的应用。自然界存在一种最有效的催化剂,称为酶。这一类高分子材料像酶一样有很强的催化作用,称为人工合成酶。酶是由氨基酸组成的蛋白质高分子化合物,它是生物体内各种生物化学反应的高效催化剂,是性能最优异的天然的高分子功能材料。现在,各种人工合成酶已经研制成功并逐步投入应用,其种类越来越多,科学家根据酶的作用原理试图模仿应用于化学工业的催化剂,在化学工业上进行一场革命。它可以制作进行化工生产,可以充分利用再生的生物资源,以摆脱传统的以石油系列为主要原料的合成工艺,而且还可用酶的催化原理,避开传统的合成工艺中的高温,高压的条件,在各种物质混合的状态下,有选择地使特定物质发生化学反应,使反应物能够不加分离地连续反应至生产出最终产物。这样,生物反应器将会改变化工企业高塔林立的传统面貌,不仅能节约能源,改善工作环境,同进还可以广开化工资源,消灭废水、废气和废料(又称三废),使建立无污染的理想化学工业成为可能。例如天门冬酰胺酶制成的中性树脂的前景就非常光明。高分子材料在医学和生命科学上的应用已有很长的历史,但是依靠着高科技的进步,近期来这个领域的发展令人惊讶,人工心脏瓣膜、人工肺、人工肾、人工血管、人造血液、人工皮肤、人工骨骼、人工关节,从研制迅速成功到不断完善,并且已付诸使用。高分子材料制作的手术器械、医护用品已不计其数。高分子材料生物化的最大特色就是控制人的健康和生命,利用不带药剂性的高分子与其他药剂合成的高分子药剂,可大大改善治疗效果,这一类药剂人体易于吸收,毒性和副作用小。如引起恶心、全身不适等不良反应的抗癌药,把它们高分子化,其效果就大大改善,像抗癌药芳庚酚酮和甲基丙烯酸结合为高分子,其效果更佳。另一类高分子药物,本身就有很高的药效,如合成的聚乙烯吡咯烷酮,就可以作为血浆的代用品。商品化的聚醚与聚氨酯合成的高分子药物与血浆蛋白质中的白蛋白的亲和力特别高,相处很融洽,是一种解决人体血凝的医用高分子材料。纵观上述,高分子已经成为21世纪材料科学中强有力的支柱,高分子材料的发展在21世纪将会取得更大的成就。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

商丘新育和网络科技有限公司
新育和总部

文档

3783

收藏

38

店铺

名师店铺
确认删除?
VIP会员服务
限时9折优惠